Product

Calculus Level 5

lim n ( N 2 + N + 1 3 ) ( N 6 + N 3 + 1 3 ) ( N 18 + N 9 + 1 3 ) ( N 2 3 n + N 3 n + 1 3 ) \lim_{n \rightarrow \infty} \left( \frac{N^{2}+N+1}{3} \right) \left( \frac{N^{6}+N^{3}+1}{3} \right) \left( \frac{N^{18}+N^{9}+1}{3} \right) \ldots \left( \frac{N^{2 \cdot 3^{n}}+N^{3^{n}}+1}{3} \right)

For integer n n , let N = 1 + 1 3 n N = 1+\frac{1}{3^{n}} . Find the value of the limit above to nearest integer.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider

N 2 3 n + N 3 n + 1 = N 3 n + 1 1 N 3 n 1 \displaystyle N^{2\cdot 3^{n}}+N^{3^{n}}+1=\dfrac{N^{3^{n+1}}-1}{N^{3^{n}}-1}

So, the product is somewhat telescopic and nearly all the terms cancel and we get,

N 3 n + 1 1 N 1 × 1 3 n + 1 \displaystyle \dfrac{N^{3^{n+1}}-1}{N-1} \times \dfrac{1}{3^{n+1}}

Substitute an expression for N, we have,

( 1 + 1 3 n ) 3 n + 1 1 3 \displaystyle \dfrac{(1+\dfrac{1}{3^{n}})^{3^{n+1}}-1}{3}

which tends to

e 3 1 3 6.3618 \displaystyle \dfrac{e^{3}-1}{3} \approx 6.3618

So, the nearest integer is therefore 6 \displaystyle\boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...