Product

Algebra Level 3

( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 201 6 2 ) = ? \Big(1-\frac{1}{2^2}\Big)\Big(1-\frac{1}{3^2}\Big)\Big(1-\frac{1}{4^2}\Big)\cdots\Big(1-\frac{1}{2016^2}\Big) = \, ?

2016/5077 2014/3035 2015/4064 2017/4032 2016/8035 2016/5843 1246/3357 2017/2048

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andrew Paul
Feb 12, 2017

We need to find: k = 1 2015 ( 1 1 ( k + 1 ) 2 ) \prod_{k=1}^{2015}\Bigg(1-\frac{1}{(k+1)^2}\Bigg) We rewrite as follows: k = 1 2015 ( ( k + 1 ) 2 1 ( k + 1 ) 2 ) \prod_{k=1}^{2015}\Bigg(\frac{(k+1)^2-1}{(k+1)^2}\Bigg) Notice that the numerator can be factored as a difference of squares: k = 1 2015 ( ( ( k + 1 ) + 1 ) ( ( k + 1 ) 1 ) ( k + 1 ) 2 ) = k = 1 2015 ( k ( k + 2 ) ( k + 1 ) 2 ) \prod_{k=1}^{2015}\Bigg(\frac{((k+1)+1)((k+1)-1)}{(k+1)^2}\Bigg)=\prod_{k=1}^{2015}\Bigg(\frac{k(k+2)}{(k+1)^2}\Bigg) Now we write out some terms: k = 1 2015 ( k ( k + 2 ) ( k + 1 ) 2 ) = ( 1 3 2 2 ) ( 2 4 3 2 ) . . . ( 2015 2017 201 6 2 ) \prod_{k=1}^{2015}\Bigg(\frac{k(k+2)}{(k+1)^2}\Bigg)=\Bigg(\frac{1\cdot 3}{2^2}\Bigg)\cdot \Bigg(\frac{2\cdot 4}{3^2}\Bigg)\cdot...\cdot \Bigg(\frac{2015\cdot 2017}{2016^2}\Bigg) It follows that the product is: ( 1 3 2 2 ) ( 2 4 3 2 ) . . . ( 2015 2017 201 6 2 ) = ( 1 2 . . . 2015 ) ( 3 4 . . . 2017 ) ( 2 3 . . . 2016 ) 2 = ( 2015 ! ) ( 2017 ! 2 ) ( 2016 ! ) 2 \Bigg(\frac{1\cdot 3}{2^2}\Bigg)\cdot \Bigg(\frac{2\cdot 4}{3^2}\Bigg)\cdot...\cdot \Bigg(\frac{2015\cdot 2017}{2016^2}\Bigg)=\frac{(1\cdot 2\cdot...\cdot 2015)(3\cdot 4\cdot...\cdot2017)}{(2\cdot 3\cdot...\cdot2016)^2}=\frac{(2015!)(\frac{2017!}{2})}{(2016!)^2} We finally reduce this to: ( 2015 ! ) ( 2017 ! 2 ) ( 2016 ! ) 2 = 2017 4032 \frac{(2015!)(\frac{2017!}{2})}{(2016!)^2}=\frac{2017}{4032} So we conclude: k = 1 2015 ( 1 1 ( k + 1 ) 2 ) = 2017 4032 \prod_{k=1}^{2015}\Bigg(1-\frac{1}{(k+1)^2}\Bigg)=\boxed{\frac{2017}{4032}}

Lixin Zheng
May 6, 2017

Notice that every fraction in the form ( 1 1 k 2 ) (1-\frac{1}{k^2}) can be written as ( 1 1 k ) ( 1 + 1 k ) (1-\frac{1}{k})(1+\frac{1}{k}) . Expanding for the first few yields ( 1 1 2 ) ( 1 + 1 2 ) ( 1 1 3 ) ( 1 + 1 3 ) . . . ( 1 1 2016 ) ( 1 + 1 2016 ) \left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)...\left(1-\frac{1}{2016}\right)\left(1+\frac{1}{2016}\right) = ( 1 2 ) ( 3 2 ) ( 2 3 ) ( 4 3 ) . . . ( 2015 2016 ) ( 2017 2016 ) =\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{3}\right)...\left(\frac{2015}{2016}\right)\left(\frac{2017}{2016}\right) Note that all consecutive terms starting from the second cancels out, so we are left with ( 1 2 ) ( 2017 2016 ) \left(\frac{1}{2}\right)\left(\frac{2017}{2016}\right) = 2017 4032 \boxed{\frac{2017}{4032}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...