Product is 4 times the sum

How many pairs ( x , y ) (x,y) of integers are there such that their product equals 4 times their sum?

12 10 9 15 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ossama Ismail
Feb 18, 2018

Ans: 10

x y = 4 ( x + y ) x y 4 x 4 y = 0 x y 4 x 4 y + 16 = 16 ( x 4 ) ( y 4 ) = 16 And the possible answers are: \begin{aligned} xy &= 4(x+y) \\ xy -4x - 4y &= 0\\ xy -4x - 4y + 16 &= 16\\ (x-4)(y-4) &= 16 \\ \text{And the possible answers are: } & \\ \end{aligned}

( x 4 ) , ( y 4 ) ( x , y ) 1 : ( 16 , 1 ) ( 12 , 3 ) 2 : ( 8 , 2 ) ( 4 , 2 ) 3 : ( 4 , 4 ) ( 0 , 0 ) 4 : ( 2 , 8 ) ( 2 , 4 ) 5 : ( 1 , 16 ) ( 3 , 12 ) 6 : ( 1 , 16 ) ( 5 , 20 ) 7 : ( 2 , 8 ) ( 6 , 12 ) 8 : ( 4 , 4 ) ( 8 , 8 ) 9 : ( 8 , 2 ) ( 12 , 6 ) 10 : ( 16 , 1 ) ( 20 , 5 ) \begin{aligned} & (x-4),(y-4) & \ \ (x,y) \\ 1:& \ (-16, -1 ) & ( -12, 3 )\\ 2:& \ (-8, -2 ) & ( -4, 2) \\ 3:& \ (-4, -4 )& ( 0, 0) \\ 4:& \ (-2, -8 )& ( 2, -4)\\ 5:& \ (-1, -16 ) & (3, -12)\\ 6:& \ (1, 16 ) & (5, 20)\\ 7:& \ (2, 8 ) & (6, 12)\\ 8:& \ (4, 4 ) & (8, 8)\\ 9:& \ (8, 2 ) & (12, 6)\\ 10:& \ (16, 1) & (20, 5)\\ \end{aligned}

what about 0,0

Stephen Mellor - 3 years, 3 months ago

Log in to reply

sorry, looked at wrong column

Stephen Mellor - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...