Product menace

Calculus Level 3

Let 2 f ( x ) d x 2 = f ( x ) \int^2f''(x)\ dx^2= f(x) , where f ( x ) f''(x) is the second derivative of f ( x ) f(x) , where 2 f ( x ) d x 2 \int^2 f''(x)\ dx^2 denotes the second indefinite integral of f ( x ) f''(x) , with integration constant C = 0 C=0 . Find

k = 2 n k 1 k ! x d x k 1 \large \prod_{k=2}^n \int^{k-1} k! x\ dx^{k-1}

x n n \frac{x^n}{n} x n x^n x n 2 + n 2 2 x^{\frac{n^2+n-2}{2}} x n ( n + 1 ) 2 x^\frac{n(n+1)}{2} x n 1 x^{n-1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 11, 2018

P = k = 2 n k 1 k ! x d x k 1 = k = 1 n 1 k ( k + 1 ) ! x d x k = 2 ! x d x 2 3 ! x d x 2 3 4 ! x d x 3 n 1 n ! x d x n 1 = x 2 x 3 x 4 x n = x ( n 1 ) ( n + 2 ) 2 = x n 2 + n 2 2 \begin{aligned} P & = \prod_{\color{#3D99F6}k=2}^n \int^{k-1} k! x \ dx^{k-1} \\ & = \prod_{\color{#D61F06}k=1}^{n-1} \int^k (k+1)! x \ dx^k \\ & = \int 2!x\ dx \int^2 3!x\ dx^2 \int^3 4!x\ dx^3 \cdots \int^{n-1} n!x\ dx^{n-1} \\ & = x^2 \cdot x^3 \cdot x^4 \cdots x^n \\ & = x^{\frac {(n-1)(n+2)}2} = \boxed{x^{\frac{n^2+n-2}2}} \end{aligned}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...