Product of 126 sines

Geometry Level 5

2 126 k = 1 126 sin ( θ + k π 127 ) \large{2^{126}\prod_{k=1}^{126} \sin{\left(\theta +\frac{k\pi}{127}\right)}} The previous product of sines can be expressed in the form sin ( A θ ) sin ( B θ ) , \frac{\sin{(A \theta)}}{\sin {(B\theta)}}, where A , A, and B B are positive integers. Find the product A B . AB.

Inspiration .


The answer is 127.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arturo Presa
Jun 6, 2017

First, we are going to state the following formula : 1 e 2 θ i = 2 sin θ e i ( θ + 3 π / 2 ) ( ) 1-e^{2\theta i}=2 \sin{ \theta} e^{i(\theta+3\pi/2)}\quad\quad\quad(*)

The proof of this formula is very simple. We just have to use the fact that sin θ = e i θ e i θ 2 i , \sin{\theta}=\frac{e^{i\theta}-e^{-i\theta}}{2i}, and the fact that e i ( 3 π / 2 ) = i . e^{i(3\pi/2)}=-i.

Now, for any natural number n n and any angle θ \theta we can define the polynomial p ( z ) = z n e 2 n θ i , p(z)=z^n-e^{2n\theta i}, with zeros e i ( 2 θ + 2 k π n ) , e^{i(2\theta+\frac{2k\pi}{n})}, where k k is any integer number satisfying 0 k n 1. 0\leq k \leq n-1. Then z n e 2 n θ i = k = 0 n 1 ( z e i ( 2 θ + 2 k π n ) ) . z^n-e^{2n\theta i}=\prod_{k=0}^{n-1}(z-e^{i(2\theta+\frac{2k\pi}{n})}). Evaluating at z = 1 , z=1, we get 1 e 2 n θ i = k = 0 n 1 ( 1 e i ( 2 θ + 2 k π n ) ) . 1-e^{2n\theta i}=\prod_{k=0}^{n-1}(1-e^{i(2\theta+\frac{2k\pi}{n})}). Now we use the formula ( ) (*) in both sides, so we get 2 sin ( n θ ) e i ( n θ + 3 π / 2 ) = k = 0 n 1 ( 2 sin ( θ + k π n ) e i ( θ + k π n + 3 π / 2 ) ) 2 \sin {(n\theta)} e^{i(n\theta+3\pi/2)} = \prod_{k=0}^{n-1}(2 \sin{(\theta+\frac{k\pi}{n})} e^{i(\theta+\frac{k\pi}{n}+{3\pi}/{2})}) The right side of which can be transform like this: 2 n k = 0 n 1 sin ( θ + k π n ) k = 0 n 1 e i ( θ + k π n + 3 π / 2 ) = 2 n e i ( n θ + ( n 1 ) π 2 + 3 n π / 2 ) k = 0 n 1 sin ( θ + k π n ) = 2^n* \prod_{k=0}^{n-1} \sin{(\theta+\frac{k\pi}{n})} \prod_{k=0}^{n-1} e^{i(\theta+\frac{k\pi}{n}+{3\pi}/{2})} =2^n* e^{i(n\theta+\frac{(n-1)\pi}{2}+{3n\pi}/{2})} \prod_{k=0}^{n-1} \sin{(\theta+\frac{k\pi}{n})} = = 2 n e i ( n θ + 2 n π π / 2 ) k = 0 n 1 sin ( θ + k π n ) = 2 n e i ( n θ π / 2 ) k = 0 n 1 sin ( θ + k π n ) . =2^n* e^{i(n\theta+2n \pi-{\pi}/{2})} \prod_{k=0}^{n-1} \sin{(\theta+\frac{k\pi}{n})}=2^n* e^{i(n\theta-{\pi}/{2})} \prod_{k=0}^{n-1} \sin{(\theta+\frac{k\pi}{n})}.

Now, dividing both sides of the formula 2 sin ( n θ ) e i ( n θ + 3 π / 2 ) = 2 n e i ( n θ π / 2 ) k = 0 n 1 sin ( θ + k π n ) 2 \sin {(n\theta)} e^{i(n\theta+3\pi/2)}=2^n* e^{i(n\theta-{\pi}/{2})} \prod_{k=0}^{n-1} \sin{(\theta+\frac{k\pi}{n})} by 2 e i ( n θ π / 2 ) sin θ , 2* e^{i(n\theta-{\pi}/{2})} \sin{\theta}, we obtain that 2 n 1 k = 1 n 1 sin ( θ + k π n ) = sin n θ sin θ . 2^{n-1}\prod_{k=1}^{n-1} \sin{(\theta+\frac{k\pi}{n})}=\frac{\sin n\theta}{\sin \theta}. Making n = 127 , n=127, in this general formula, we obtain 2 126 k = 1 126 sin ( θ + k π 127 ) = sin 127 θ sin θ . 2^{126}\prod_{k=1}^{126} \sin{(\theta+\frac{k\pi}{127})}=\frac{\sin 127\theta}{\sin \theta}. Therefore A = 127 A=127 and B = 1 , B=1, and the answer is A B = 127 . AB=\boxed{127}.

Just brilliant on brilliant.

Nivedit Jain - 4 years ago

Nice solution

maryam kouram - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...