Product of Cosines

Geometry Level 4

Consider Δ A B C \Delta ABC having semi-perimeter 21 and circumradius 8.125.

If cos A 2 cos B 2 cos C 2 \cos \dfrac{A}{2} \cos \dfrac{B}{2} \cos \dfrac{C}{2} can be expressed as x y \dfrac{x}{y} where x , y x,y are coprime positive integers, find x + y x+y .


This problem is original.


The answer is 107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Nihar Mahajan
Jul 17, 2015

Since my friends @Vishwak Srinivasan and @Satyajit Mohanty have already posted their methods , let me add one more for the sake of variety.

We know the friendly Sine rule:

a sin A = b sin B = c sin C = 2 R \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R

Applying Theorem on equal ratios , we have :

a + b + c sin A + sin B + sin C = 2 R 2 s sin A + sin B + sin C = 2 R sin A + sin B + sin C = s R ( 1 ) \dfrac{a+b+c}{\sin A+ \sin B + \sin C} = 2R \\ \Rightarrow \dfrac{2s}{\sin A+ \sin B + \sin C} = 2R \\ \Rightarrow \sin A+ \sin B + \sin C = \dfrac{s}{R} \dots (1)

We also have an identity (which can be proved only when A + B + C = π A+B+C=\pi ) :

sin A + sin B + sin C = 4 cos A 2 cos B 2 cos C 2 ( 2 ) \sin A+ \sin B + \sin C = 4\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2} \dots (2)

Equating ( 1 ) , ( 2 ) (1),(2) , we get :

4 cos A 2 cos B 2 cos C 2 = s R cos A 2 cos B 2 cos C 2 = s 4 R = 21 4 × 8.125 cos A 2 cos B 2 cos C 2 = 42 65 4\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}= \dfrac{s}{R} \\ \Rightarrow \cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}=\dfrac{s}{4R} = \dfrac{21}{4 \times 8.125} \\ \Rightarrow \cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}=\boxed{\dfrac{42}{65}}

Thus, x + y = 42 + 65 = 107 x+y=42+65=\huge\boxed{107} .


  • s s is the semi-perimeter.

  • R R is the circumradius.

  • Upvote if you liked this :)

I Used Exactly The Same Approach

Prakhar Bindal - 5 years, 11 months ago

Nihar you must mention that the identity is a conditional one and it can be proved when A + B + C = π A+B+C=\pi

Rishabh Tripathi - 5 years, 11 months ago

Log in to reply

Yeah , Thanks.

Nihar Mahajan - 5 years, 11 months ago

but when is the case when a + b + c a+b+c is not equal to 180 180

Harshi Singh - 5 years, 10 months ago

I am calling the expression to be found as E E

In a triangle,

Δ = a b c 4 R \Delta = \dfrac{abc}{4R}

cos A 2 = s ( s a ) b c \cos\dfrac{A}{2} = \sqrt{\dfrac{s(s-a)}{bc}}

The above formula is cyclic.

Hence:

E = cos A 2 cos B 2 cos C 2 = s s ( s a ) ( s b ) ( s c ) a 2 b 2 c 2 = s Δ a b c E =\cos\dfrac{A}{2} \cos\dfrac{B}{2} \cos\dfrac{C}{2} = \dfrac{s\sqrt{s(s-a)(s-b)(s-c)}}{\sqrt{a^2 b^2 c^2}} = \dfrac{s\Delta}{abc}

E = s a b c 4 R a b c = s 4 R = 21 32.5 = 42 65 \Rightarrow E = \dfrac{s \frac{abc}{4R}}{abc} = \dfrac{s}{4R} = \dfrac{21}{32.5} = \dfrac{42}{65}

x = 42 , y = 65 x + y = 107 \Rightarrow x = 42 , y = 65 \Rightarrow x+y = 107


Note:

  • s s is semi-perimeter

  • Δ \Delta is Area of triangle

  • R R is circumradius

  • a , b , c a,b,c are the sides opposite to angles A , B , C A,B,C respectively.

  • s ( s a ) ( s b ) ( s c ) = Δ \sqrt{s(s-a)(s-b)(s-c)} = \Delta by Heron's Formula

Perfect solution!!

monty g - 5 years, 11 months ago

Log in to reply

Thanks. Cheers!!

Vishwak Srinivasan - 5 years, 11 months ago
Satyajit Mohanty
Jul 16, 2015

We'll use the four well known identities:

r = 4 R s i n ( A / 2 ) s i n ( B / 2 ) s i n ( C / 2 ) r = 4Rsin(A/2)sin(B/2)sin(C/2) ; a = 2 R s i n ( A ) a = 2Rsin(A) ; R = a b c 4 S R = \frac{abc}{4S} ; r = S s r = \frac{S}{s} ,

Where r r = inradius, R R = circumradius, S S = Area, s s = semiperimeter; A , B , C A,B,C are angles and a , b , c a,b,c are the corresponding sides of the triangle.

Let P = c o s ( A / 2 ) c o s ( B / 2 ) c o s ( C / 2 ) P = cos(A/2)cos(B/2)cos(C/2)

=》 8 s i n ( A / 2 ) s i n ( B / 2 ) s i n ( C / 2 ) P = s i n ( A ) s i n ( B ) s i n ( C ) 8sin(A/2)sin(B/2)sin(C/2)P = sin(A)sin(B)sin(C)

=》 8 r P 4 R = a b c ( 2 R ) 3 \frac{8rP}{4R} = \frac{abc}{(2R)^3}

=》 2 r P = a b c 8 R 2 2rP = \frac{abc}{8R^2}

=》 P = a b c 16 R 2 r = 4 S 16 R r = S 4 R r = s 4 R P = \frac{abc}{16R^2r} = \frac{4S}{16Rr} = \frac{S}{4Rr} = \frac{s}{4R}

We are given s = 21 , R = 8.125 s = 21, R = 8.125 .

=》 P = 42 65 = x y P = \frac{42}{65} = \frac{x}{y}

=》 x = 42 , y = 65 , x + y = 107 x = 42, y = 65, x + y = \boxed{107}

Aakash Khandelwal
Jul 18, 2015

Use sine rule ie

a/sin(A)=b/sin(B)=c/sin(C)=2R

where a,b,c are lengths of triangle ABC and R is radius of circumcircle

also use conditional identites to prove sin(A)+sin(B)+sin(C)=4cos(A/2)cos(B/2)cos(C/2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...