Product Of Cosines

Geometry Level 2

Evaluate

cos 1 0 × cos 2 0 × cos 3 0 × cos 4 0 × cos 5 0 × cos 6 0 × cos 7 0 × cos 8 0 . \cos 10^\circ \times \cos 20 ^ \circ \times \cos 30 ^ \circ \times \cos 40 ^ \circ \times \cos 50^\circ \times \cos 60 ^ \circ \times \cos 70 ^ \circ \times \cos 80 ^ \circ.

12 256 \frac{ \sqrt{12} } { 256} 4 256 \frac{ 4 } { 256} 10 256 \frac{ \sqrt{10} } { 256} 3 256 \frac{3}{256}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
May 29, 2014

The following trigonometric formulae are applied:

sin ( A ) = cos ( 9 0 A ) sin ( 2 A ) = 2 sin ( A ) cos ( A ) sin ( 3 A ) = 4 sin ( A ) sin ( 6 0 A ) sin ( 6 0 + A ) \begin{aligned} \sin(A) & = & \cos(90^\circ - A) \\ \sin(2A) & = & 2\sin(A) \cos(A) \\ \sin(3A) & = & 4 \sin(A) \sin(60^\circ - A) \sin(60^\circ + A) \\ \end{aligned}

We group the terms as such:

( cos 1 0 × cos 8 0 ) × ( cos 2 0 × cos 7 0 ) × ( cos 3 0 × cos 6 0 ) × ( cos 4 0 × cos 5 0 ) \left ( \cos 10^\circ \times \cos 80^\circ \right ) \times \left ( \cos 20^\circ \times \cos 70^\circ \right ) \times \left ( \cos 30^\circ \times \cos 60^\circ \right ) \times \left ( \cos 40^\circ \times \cos 50^\circ \right )

= ( cos 1 0 × sin 1 0 ) × ( cos 2 0 × sin 2 0 ) × ( cos 3 0 × sin 3 0 ) × ( cos 4 0 × sin 4 0 ) = \left ( \cos 10^\circ \times \sin 10^\circ \right ) \times \left ( \cos 20^\circ \times \sin 20^\circ \right ) \times \left ( \cos 30^\circ \times \sin 30^\circ \right ) \times \left ( \cos 40^\circ \times \sin 40^\circ \right )

= ( 1 2 ) 4 × sin 2 0 × sin 4 0 × sin 6 0 × sin 8 0 = \left ( \frac {1}{2} \right )^4 \times \sin 20^\circ \times \sin 40^\circ \times \sin 60^\circ \times \sin 80^\circ

= 1 16 × sin 6 0 × 1 4 × ( 4 sin 2 0 × sin 4 0 × sin 8 0 ) = \frac {1}{16} \times \sin 60^\circ \times \frac {1}{4} \times \left (4 \sin 20^\circ \times \sin 40^\circ \times \sin 80^\circ \right )

= 1 64 × sin 6 0 × ( 4 sin 2 0 × sin ( 60 20 ) × sin ( 60 + 20 ) ) = \frac {1}{64} \times \sin 60^\circ \times \left (4 \sin 20^\circ \times \sin (60-20)^\circ \times \sin (60+20)^\circ \right )

= 1 64 × sin 6 0 × sin 6 0 = \frac {1}{64} \times \sin 60^\circ \times \sin 60^\circ

= 1 64 × ( 3 2 ) 2 = \frac {1}{64} \times \left ( \frac {\sqrt 3}{2} \right )^2

= 3 256 = \large \boxed{\frac {3}{256}}

That's a very awesome solution there,I have done in another way.The more ways we know the better it is!

pranav jangir - 7 years ago
Pranav Jangir
May 30, 2014

First of all we seperate the known quantities :-

( c o s 30 × c o s 60 ) (cos30\quad \times \quad cos60)

Then by using the formula :-

4 × [ C o s A × C o s ( 60 A ) × C o s ( 60 + A ) ] = C o s 3 A 4\quad \times \quad [CosA\quad \times \quad Cos(60-A)\quad \times \quad Cos(60+A)]\quad =\quad Cos3A

We do the grouping as follows --- >

C o s 10 × C o s 50 × C o s 70 ( G r o u p 1 ) C o s 20 × C o s 40 × C o s 80 ( G r o u p 2 ) Cos10\quad \times \quad Cos50\quad \times \quad Cos70\quad \quad ------\quad (Group\quad 1)\\ Cos20\quad \times \quad Cos40\quad \times \quad Cos80\quad \quad ------\quad (Group\quad 2)

Now for group 1...

C o s 10 × C o s 50 × C o s 70 × 4 4 ( 1 ) A s w e k n o w f r o m t h e f o r m u l a s t a t e d a b o v e ( 1 ) = C o s ( 3 × 10 ) 4 = C o s 30 4 Cos10\quad \times \quad Cos50\quad \times \quad Cos70\quad \times \quad \frac { 4 }{ 4 } \quad ------(1)\\ As\quad we\quad know\quad from\quad the\quad formula\quad stated\quad above\quad (1)\quad =\quad \frac { Cos(3\times 10) }{ 4 } \quad =\quad \frac { Cos30 }{ 4 }

Similarly for group 2...

C o s 20 × C o s 40 × C o s 80 × 4 4 ( 2 ) = C o s ( 20 × 3 ) 4 = C o s 60 4 Cos20\quad \times \quad Cos40\quad \times \quad Cos80\quad \times \quad \frac { 4 }{ 4 } \quad \quad ------(2)\\ =\quad \frac { Cos(20\times 3) }{ 4 } \quad =\quad \frac { Cos60 }{ 4 }

Now the simplest part :D multiply and the results we have...

C o s 30 × C o s 60 × C o s 30 4 × C o s 60 4 = 3 256 Cos30\quad \times \quad Cos60\quad \times \quad \frac { Cos30 }{ 4 } \quad \times \quad \frac { Cos60 }{ 4 } \quad =\quad \boxed { \frac { 3 }{ 256 } }

Phew.. That was a lot of work done on LaTeX.This is my second time on LaTeX so please excuse me for any mistakes if there are any.Hope this helps.

If anyone has any doubts please dont hesitate to ask me.It would be an honor.For the proof of CosA x Cos(60-A) x Cos(60+A) x4 = Cos3A ,just open the expression.

pranav jangir - 7 years ago

Log in to reply

can u tell me the proof of cos A x cos(60-A) x Cos (60+A) = Cos 3A

Mayank Raj - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...