Product of equivalent resistances

Circuit: 1

Circuit: 2

Circuit: 3

Circuit: 4

In all the above circuits, there are three resistors each of resistance 1 Ω 1 \Omega . Let R e q 1 R_{eq_1} , R e q 2 R_{eq_2} , R e q 3 R_{eq_3} and R e q 4 R_{eq_4} be the equivalent resistances of the circuit 1 1 , 2 2 , 3 3 and 4 4 respectively. Find R e q 1 × R e q 2 × R e q 3 × R e q 4 R_{eq_1} \times R_{eq_2} \times R_{eq_3} \times R_{eq_4}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jaime Cabrera
Mar 5, 2016

For C1, R e q 1 = 1 + 1 + 1 = 3 R_{eq1}=1+1+1=3 For C2, 1 R e q 2 = 1 1 + 1 + 1 = 3 2 R e q 2 = 2 3 \frac { 1 }{ R_{ eq2 } } =\frac { 1 }{ 1+1 } +1=\frac { 3 }{ 2 } \therefore { R }_{ eq2 }=\frac { 2 }{ 3 } For C3, 1 R e q 3 = 1 + 1 + 1 = 3 R e q 3 = 1 3 \frac { 1 }{ R_{ eq3 } } =1+1+1=3 \therefore { R }_{ eq3 }=\frac { 1 }{ 3 } For C4, R e q 4 = 1 1 + 1 + 1 = 3 2 R_{ eq4 } =\frac { 1 }{ 1+1 } +1=\frac { 3 }{ 2 } Finally, we obtain the product 3 × 2 3 × 1 3 × 3 2 = 1 3\times\frac{2}{3}\times\frac{1}{3}\times\frac{3}{2}=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...