Product of Factorials modulo Prime

Solve the linear congruence x 49 ! 51 ! ( m o d 101 ) . \large x \equiv 49! 51!\pmod{101}.

Enter the minimum non-negative value of x x .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Wilson's Theorem

Note first that n ( 101 n ) ( m o d 101 ) n \equiv -(101 - n) \pmod{101} for 1 n 51 1 \le n \le 51 implies that

51 ! ( 50 ) ( 51 ) ( 52 ) . . . ( 99 ) ( 100 ) ( m o d 101 ) ( 1 ) 51 100 ! 49 ! ( m o d 101 ) 51! \equiv (-50)(-51)(-52)...(-99)(-100) \pmod{101} \equiv (-1)^{51}\dfrac{100!}{49!} \pmod{101} .

Thus 49 ! 51 ! ( 1 ) 51 100 ! ( m o d 101 ) ( 1 ) ( 1 ) ( m o d 101 ) 1 ( m o d 101 ) 49!51! \equiv (-1)^{51}100! \pmod{101} \equiv (-1)(-1) \pmod{101} \equiv \boxed{1} \pmod{101} ,

since by Wilson's Theorem ( p 1 ) ! 1 ( m o d p ) (p - 1)! \equiv -1 \pmod{p} for any prime p p .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...