Product of GP

Algebra Level 3

Let a n a_{n} be sequence in geometric Progression with first term 16 16 and common ratio of 1 4 \frac{1}{4} . Let P n P_{n} be the product of first n n terms of the given Geometric Progression. Find the value of n = 1 P n 1 n \sum_{n=1}^{\infty} P_{n}^\frac{1}{n}

32 68 64 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zico Quintina
Jun 29, 2018

a n = 16 ( 1 4 ) n 1 P n = k = 1 n 16 ( 1 4 ) k 1 = 1 6 n k = 1 n ( 1 4 ) k 1 = 1 6 n ( 1 4 ) 0 + 1 + 2 + + ( n 1 ) = 1 6 n ( 1 4 ) i = 0 n 1 i = 1 6 n ( 1 4 ) n ( n 1 ) 2 = 2 4 n 2 n ( n 1 ) = 2 n ( 5 n ) P n 1 n = 2 5 n n = 1 P n 1 n = n = 1 2 5 n = 2 5 n = 1 2 n = 2 5 ( 1 2 1 1 2 ) = 2 5 = 32 \begin{array}{rl} a_n &= \ \ 16 \left( \dfrac{1}{4} \right)^{n - 1} \\ \\ \therefore P_n &= \ \ \prod_{k=1}^n 16 \left( \dfrac{1}{4} \right)^{k - 1} \\ \\ &= \ \ 16^n \prod_{k=1}^n \left( \dfrac{1}{4} \right)^{k - 1} \\ \\ &= \ \ 16^n \left( \dfrac{1}{4} \right)^{0 + 1 + 2 + \ldots + (n - 1)} \\ \\ &= \ \ 16^n \left( \dfrac{1}{4} \right)^{\small \displaystyle\sum_{i = 0}^{n - 1} i} \\ \\ &= \ \ 16^n \left( \dfrac{1}{4} \right)^{\Large \frac{n(n -1)}{2}} \\ \\ &= \ \ 2^{4n} \cdot 2^{-n(n - 1)} \\ \\ &= \ \ 2^{n(5 - n)} \\ \\ \implies P_n^{\frac{1}{n}} &= \ \ 2^{5 - n} \\ \\ \therefore \sum_{n = 1}^{\infty} P_n^{\frac{1}{n}} &= \ \ \sum_{n = 1}^{\infty} 2^{5 - n} \\ \\ &= \ \ 2^5 \sum_{n = 1}^{\infty} 2^{-n} \\ \\ &= \ \ 2^5 \left( \dfrac{\frac{1}{2}}{1 - \frac{1}{2}} \right) \\ \\ &= \ \ 2^5 \\ \\ &= \ \ \boxed{32} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...