Product of ln?

Calculus Level 4

π 2 6 + 0 1 ln ( x ) ln ( 1 x ) d x = ? \dfrac{ \pi ^{2} }{6} + \int_0^1 \ln(x) \ln(1-x) \, dx = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 10, 2016

I = 0 1 ln x ln ( 1 x ) d x By integration by parts. = [ ( x 1 ) ln ( 1 x ) x ] ln x 0 1 + 0 1 ( 1 x ) ln ( 1 x ) + x x d x = 0 + 0 1 ln ( 1 x ) x d x 0 1 ln ( 1 x ) d x + 0 1 d x = L i 2 ( 1 ) [ ( x 1 ) ln ( 1 x ) x ] 0 1 + x 0 1 = ζ ( 2 ) + 1 + 1 = 2 π 2 6 \begin{aligned} I & = \int_0^1 \ln x \ln (1-x) \ dx & \small \color{#3D99F6}{\text{By integration by parts.}} \\ & = [(x-1)\ln(1-x) - x]\ln x \ \bigg|_0^1 + \int_0^1 \frac {(1-x)\ln(1-x) + x}x \ dx \\ & = 0 + \int_0^1 \frac {\ln(1-x)}x dx - \int_0^1 \ln(1-x) \ dx + \int_0^1 dx \\ & = -Li_2(1) - \bigg[(x-1)\ln(1-x) - x\bigg]_0^1 + x \ \bigg|_0^1 \\ & = - \zeta (2) + 1 + 1 \\ & = 2 - \frac {\pi^2}6 \end{aligned}

π 2 6 + I = 2 \implies \dfrac {\pi^2}6 + I = \boxed{2} .

Using the fact that 1 / ( 1 x ) = 1 + x + x 2 + x 3 + . . . . 1/(1-x)=1+x+x^2+x^3+.... One could integrate and find that l n ( 1 x ) = x + x 2 / 2 + x 3 / 3 + . . . -ln(1-x)=x+x^2/2+x^3/3+... Substituting into the integral will give: π 2 / 6 i = 1 0 1 x k l n ( x ) / k d x \pi^2/6-\sum_{i=1}^\infty \int_0^1 x^k * ln(x)/k dx Now if we solve the integral: 0 1 x k l n ( x ) d x \int_0^1 x^k * ln(x) dx (it just involves u substitution and integration by parts), it will yield: 1 / ( k + 1 ) 2 1/(k+1)^2 π 2 / 6 + i = 1 ( 1 / ( k ( k + 1 ) 2 ) ) \pi^2/6+\sum_{i=1}^\infty (1/(k*(k+1)^2)) Using partial fraction decomposition: π 2 / 6 + i = 1 ( 1 / ( k ( k + 1 ) 2 ) ) = π 2 / 6 + i = 1 ( 1 / k 1 / ( k + 1 ) 1 / ( k + 1 ) 2 ) = π 2 / 6 + i = 1 ( 1 / k 1 / ( k + 1 ) ) ( π 2 / 6 1 ) \pi^2/6+\sum_{i=1}^\infty (1/(k*(k+1)^2))=\pi^2/6+\sum_{i=1}^\infty (1/k-1/(k+1)-1/(k+1)^2)=\pi^2/6+\sum_{i=1}^\infty (1/k-1/(k+1))-(\pi^2/6-1) The two π 2 / 6 \pi^2/6 cancels out and the i = 1 ( 1 / k 1 / ( k + 1 ) ) \sum_{i=1}^\infty (1/k-1/(k+1)) is a telescoping series that evaluates to 1, Hence the answer is 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...