Product of many numbers. Too much!

Algebra Level 3

The sequence of numbers a 1 , a 2 , a 3 , , a n a_1,a_2,a_3,\ldots ,a_n is defined by a n = n + 3 n + 5 a_n= \dfrac{n+3}{n+5} for each integer n 1 n\ge1 . What is the product of the first 15 terms of this sequence?

4 19 \frac{4}{19} 1 5 \frac{1}{5} 5 19 \frac{5}{19} 1 20 \frac{1}{20} 1 19 \frac{1}{19}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hana Wehbi
Sep 16, 2016

Based on the definition of a n a_n , we can calculate the values in the sequence as:

a 1 = 1 + 3 1 + 5 = 4 6 a_1=\frac{1+3}{1+5}=\frac{4}{6}

a 2 = 2 + 3 2 + 5 = 5 7 a_2=\frac{2+3}{2+5}=\frac{5}{7}

a 3 = 3 + 3 3 + 5 = 6 8 a_3=\frac{3+3}{3+5}=\frac{6}{8}

a 4 = 15 + 3 15 + 5 = 18 20 a_4=\frac{15+3}{15+5}=\frac{18}{20} ,

Thus, the product of the first 15 15 terms is:

a 1 a 2 a 3 a 4 a 5 . . . a 12 a 13 a 14 a 15 = 4 × 5 × 6 × 7 × 8...15 × 16 × 17 × 18 6 × 7 × 8...15 × 16 × 17 × 18 × 19 × 20 a_1a_2a_3a_4a_5...a_{12}a_{13}a_{14}a_{15}= \frac{4\times5\times6\times7\times8...15\times16\times17\times18}{6\times7\times8...15\times16\times17\times18\times19\times20}

Note that both the numerator and denominator have factors of all the consecutive integers between 6 6 and 18 18 . If both the numerator and denominator have a common factor, then the factor can be eliminated from both numerator and denominator. Thus, the product of the first 15 15 terms is:

a 1 a 2 a 3 a 4 a 5 . . . a 12 a 13 a 14 a 15 = 4 × 5 × 6 × 7 × 8...15 × 16 × 17 × 18 6 × 7 × 8...15 × 16 × 17 × 18 × 19 × 20 = a_1a_2a_3a_4a_5...a_{12}a_{13}a_{14}a_{15}= \frac{4\times5\times\color{#D61F06}{6\times7\times8...15\times16\times17\times18}}{\color{#D61F06}{6\times7\times8...15\times16\times17\times18} \color{#333333}{\times19\times20}}=

4 × 5 19 × 20 = 1 19 \frac{4\times5}{19\times20}=\boxed{\Large\frac{1}{19}}

Tapas Mazumdar
Sep 18, 2016

Let

P = n = 1 15 n + 3 n + 5 = 18 ! / 3 ! 20 ! / 5 ! = 1 19 × 20 4 × 5 = 1 19 \begin{aligned} P & = \displaystyle \prod_{n=1}^{15}{\dfrac{n+3}{n+5}} \\ & = \dfrac{{18!}/{3!}}{{20!}/{5!}} \\ & = \dfrac{1}{19\times20}\cdot 4\times5 \\ & = \boxed{\dfrac{1}{19}} \end{aligned}

Nice solution

Hana Wehbi - 4 years, 9 months ago

Thanks. :)

Tapas Mazumdar - 4 years, 9 months ago
Chew-Seong Cheong
Sep 16, 2016

P = a 1 a 2 a 3 . . . a 15 = 4 6 5 7 6 8 7 9 16 18 17 19 18 20 = 4 6 5 7 6 8 7 9 16 18 17 19 18 20 = 4 5 19 20 = 1 19 \begin{aligned} P & = a_1a_2a_3...a_{15} \\ & = \frac 46 \cdot \frac 57 \cdot \frac 68 \cdot \frac 79 \cdots \frac {16}{18} \cdot \frac {17}{19} \cdot \frac {18}{20} \\ & = \frac 4{\cancel{6}} \cdot \frac 5{\cancel{7}} \cdot \frac {\cancel{6}}{\cancel{8}} \cdot \frac {\cancel{7}}{\cancel{9}} \cdots \frac {\cancel{16}}{\cancel{18}} \cdot \frac {\cancel{17}}{19} \cdot \frac {\cancel{18}}{20} \\ & = \frac {4 \cdot 5}{19 \cdot 20} \\ & = \boxed{\dfrac 1{19}} \end{aligned}

Nice solution.

Hana Wehbi - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...