Product of Totatives-I

Let P \mathbb P be the product of all possible positive integers a 1000 a\leq1000 such that gcd ( a , 1000 ) = 1 \gcd(a,1000)=1 .

Enter the remainder when P \mathbb P is divided by 1000.


Notation: gcd ( ) \gcd(\cdot) denotes the greatest common divisor function.

Bonus : Generalize this for any positive integer n n replacing 1000.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jason Martin
Nov 13, 2017

The natural arithmetic to consider is the multiplicative group of residues modulo n n , which we will denote U ( n ) = { a Z n g c d ( a , n ) = 1 } U(n)=\{a \in \mathbb{Z}_n | gcd(a, n)=1 \} . We can then represent U ( n ) U(n) as

U ( n ) U ( 2 a ) × U ( p 1 r 1 ) × U ( p 2 r 2 ) × × U ( p k r k ) U(n) \approx U(2^a)\times U(p_1^{r_1})\times U(p_2^{r_2})\times \ldots \times U(p_k^{r_k}) ,

where n = 2 a p 1 r 1 p 2 r 2 p k r k n=2^ap_1^{r_1}p_2^{r_2}\cdot \ldots \cdot p_k^{r_k} for distinct odd primes p i p_i , r i 1 r_i \geq 1 , and a 0 a \geq 0 ( \approx stands for isomorphic). Now we notice that the only elements of U ( p i r i ) U(p_i^{r_i}) satisfying b 2 1 m o d n b^2 \equiv 1 \mod n are ± 1 \pm 1 . Furthermore, we know U ( 2 a ) Z 2 × Z 2 a 2 U(2^a) \approx \mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}} for a 2 a \geq 2 , so it should have 4 4 distinct elements satisfying b 2 1 m o d 2 a b^2 \equiv 1 \mod 2^a (if a = 0 a=0 or 1 1 , then U ( 2 a ) U(2^a) is just the trivial group).

Therefore, there are 4 2 2 2 = 2 k + 2 4 \cdot 2\cdot 2\cdot \ldots \cdot 2=2^{k+2} residues b b satisfying b 2 1 m o d n b^2 \equiv 1 \mod n for a 2 a \geq 2 , and 2 k 2^k for a = 0 , 1 a=0,1 . Set T = { b U ( n ) b 2 1 m o d n } T=\{b \in U(n) | b^2 \equiv 1 \mod n\} . Then notice that

b U ( n ) b = b T b \displaystyle \prod_{b \in U(n)} b= \prod_{b \in T} b .

This is because if b T b \notin T , then b b 1 b \ne b^{-1} , and so the LHS can be rearranged to make b b and b 1 b^{-1} cancel. Furthermore, the RHS can be reduced by considering T = C D T=C \cup D where C = { c T c < n / 2 } C=\{c \in T | c<n/2 \} and D = { d T d > n / 2 } D=\{d \in T | d>n/2 \} . Clearly, for each d D d\in D , d c m o d n d \equiv -c \mod n for some c C c\in C . Thus,

b T b = ( 1 ) C c C c 2 = ( 1 ) C = ( 1 ) T / 2 = ( 1 ) 2 k ± 1 = 1 \displaystyle \prod_{b \in T} b=(-1)^{|C|} \prod_{c \in C} c^2=(-1)^{|C|}=(-1)^{|T|/2}=(-1)^{2^{k\pm 1}}=\boxed{1}

Note: If n = 1 , 2 n=1, 2 then the product trivially yields 1 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...