Product of tangents -part 1

Geometry Level 2

Given that 0 < x < 90 0<x<90 and that tan 1 2 tan 2 4 tan 4 8 = tan x \tan 12^{\circ} \tan 24^{\circ} \tan 48^{\circ}= \tan x^{\circ}

Find the value of x x .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chan Lye Lee
Oct 18, 2020

Using the identity tan ( 3 x ) = tan ( 6 0 x ) tan ( x ) tan ( 6 0 + x ) \tan (3x) = \tan(60^{\circ} - x) \tan (x) \tan (60^{\circ} + x) , we have

tan 1 2 tan 2 4 tan 4 8 = ( tan 4 8 tan 1 2 tan 7 2 ) tan 2 4 tan 7 2 = ( tan 3 6 ) tan 2 4 tan 7 2 = tan 3 6 tan 2 4 tan 8 4 tan 7 2 tan 8 4 = tan 7 2 tan 7 2 tan 8 4 = 1 tan 8 4 = tan 6 \tan 12^{\circ} \tan 24^{\circ} \tan 48^{\circ} = \frac{\left(\tan 48^{\circ} \tan 12^{\circ} \tan 72^{\circ} \right)\tan 24^{\circ}}{\tan 72^{\circ} } = \frac{\left(\tan 36^{\circ} \right)\tan 24^{\circ}}{\tan 72^{\circ} } = \frac{\tan 36^{\circ}\tan 24^{\circ}\tan 84^{\circ}}{\tan 72^{\circ}\tan 84^{\circ} } = \frac{\tan 72^{\circ}}{\tan 72^{\circ}\tan 84^{\circ} }=\frac{1}{\tan 84^{\circ} }=\tan 6^{\circ}

As 0 < x < 90 0<x<90 and tan x = tan 6 \tan x =\tan 6^{\circ} , x = 6 \boxed{x=6} .

Chew-Seong Cheong
Oct 19, 2020

Using the identity ( equation (35) ),

k = 1 ( n 1 ) / 2 tan ( k π n ) = { n if n is odd 1 if n is even \prod_{k=1}^{\lfloor (n-1)/2 \rfloor} \tan \left(\frac {k\pi}n \right) = \begin{cases} \sqrt n & \text{if }n \text{ is odd} \\ 1 & \text{if }n \text{ is even} \end{cases}

we have:

tan π 15 tan 2 π 15 tan π 5 tan 4 π 15 tan π 3 tan 2 π 5 tan 7 π 15 = 15 tan 1 2 tan 2 4 tan 4 8 tan π 3 tan π 5 tan 2 π 5 cot ( π 2 7 π 15 ) = 15 Note that k = 1 2 tan k π 5 = 5 tan 1 2 tan 2 4 tan 4 8 3 5 cot π 30 = 15 tan 1 2 tan 2 4 tan 4 8 = tan π 30 = tan 6 \begin{aligned} \blue{\tan \frac \pi{15}} \blue{\tan \frac {2\pi}{15}} \tan \frac \pi 5 \blue{\tan \frac {4\pi}{15}} \tan \frac \pi 3 \tan \frac {2\pi}5 \tan \frac {7\pi}{15} & = \sqrt {15} \\ \blue{\tan 12^\circ \tan 24^\circ \tan 48^\circ} \tan \frac \pi 3 \red{\tan \frac \pi 5 \tan \frac {2\pi}5} \cot \left(\frac \pi 2 - \frac {7\pi}{15}\right) & = \sqrt {15} & \small \red{\text{Note that }\prod_{k=1}^2 \tan \frac {k\pi}5 = \sqrt 5} \\ \blue{\tan 12^\circ \tan 24^\circ \tan 48^\circ} \cdot \sqrt 3 \cdot \red{\sqrt 5} \cdot \cot \frac \pi{30} & = \sqrt {15} \\ \implies \tan 12^\circ \tan 24^\circ \tan 48^\circ & = \tan \frac \pi{30} = \tan 6^\circ \end{aligned}

Therefore x = 6 x = \boxed 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...