Product of tangents -part 2

Geometry Level 3

Given that 0 < x < 90 0<x<90 and that tan 2 7 tan 3 3 tan 7 5 = tan x \tan 27^{\circ} \tan 33^{\circ} \tan 75^{\circ}= \tan x^{\circ}

Find the value of x x .


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Oct 30, 2020

Using the identity tan 3 x = tan ( 60 ° x ) tan x tan ( 60 ° + x ) \tan 3x = \tan (60° - x) \tan x \tan (60° + x) ,

If x = 3 ° x = 3° , then tan 9 ° = tan 57 ° tan 3 ° tan 63 ° \tan 9° = \tan 57° \tan 3° \tan 63° . . . ( A ) ... (A)

If x = 9 ° x = 9° , then tan 27 ° = tan 51 ° tan 9 ° tan 69 ° \tan 27° = \tan 51° \tan 9° \tan 69° . . . ( B ) ... (B)

If x = 27 ° x = 27° , then tan 81 ° = tan 33 ° tan 27 ° tan 87 ° \tan 81° = \tan 33° \tan 27° \tan 87° . . . ( C ) ... (C)

Using the identity tan 5 x = tan ( 72 ° x ) tan ( 36 ° x ) tan x tan ( 36 ° + x ) tan ( 72 ° + x ) \tan 5x = \tan (72° - x) \tan (36° - x) \tan x \tan (36° + x) \tan (72° + x) ,

If x = 3 ° x = 3° , then tan 15 ° = tan 69 ° tan 33 ° tan 3 ° tan 39 ° tan 75 ° \tan 15° = \tan 69° \tan 33° \tan 3° \tan 39° \tan 75° . . . ( D ) ... (D)

Equation ( A ) (A) can be re-written as tan 3 ° = tan 9 ° tan 33 ° tan 27 ° \tan 3° = \tan 9° \tan 33° \tan 27° , and substituting equation ( B ) (B) into this gives tan 3 ° = tan 2 9 ° tan 33 ° tan 51 ° tan 69 ° \tan 3° = \tan^2 9° \tan 33° \tan 51° \tan 69° , which can be re-written as tan 3 ° tan 39 ° = tan 2 9 ° tan 33 ° tan 69 ° \tan 3° \tan 39° = \tan^2 9° \tan 33° \tan 69° . . . ( E ) ... (E)

Equation ( D ) (D) can be re-written as tan 2 15 ° = tan 69 ° tan 33 ° tan 3 ° tan 39 ° \tan^2 15° = \tan 69° \tan 33° \tan 3° \tan 39° . Combining this with ( E ) (E) gives tan 2 15 ° = tan 2 9 ° tan 2 33 ° tan 2 69 ° \tan^2 15° = \tan^2 9° \tan^2 33° \tan^2 69° or tan 15 ° = tan 9 ° tan 33 ° tan 69 ° \tan 15° = \tan 9° \tan 33° \tan 69° . . . ( F ) ... (F)

Substituting equation ( F ) (F) back into ( E ) (E) gives tan 3 ° tan 39 ° = tan 9 ° tan 15 ° \tan 3° \tan 39° = \tan 9° \tan 15° , which can be re-written as tan 3 ° tan 81 ° tan 75 ° = tan 51 ° \tan 3° \tan 81° \tan 75° = \tan 51° , and since equation ( C ) (C) can be re-written as tan 3 ° tan 81 ° = tan 27 ° tan 33 ° \tan 3° \tan 81° = \tan 27° \tan 33° , we can substitute that in and obtain tan 27 ° tan 33 ° tan 75 ° = tan 51 ° \tan 27° \tan 33° \tan 75° = \tan \boxed{51}° .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...