Product of tans

Geometry Level 4

log 2 ( r = 1 45 ( 1 + tan r ) ) \large{\log_{2} \left (\displaystyle \prod _{ r=1 }^{ 45 }{ \left( 1+\tan { { r }^{ \circ } } \right) } \right)}

Find the sum of digits of the number above.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenny Lau
Sep 9, 2015

[ tan ( x ) + 1 ] [ tan ( 4 5 x ) + 1 ] \quad[\tan(x)+1][\tan(45^\circ-x)+1]

= [ tan ( x ) + 1 ] [ 1 tan x 1 + tan x + 1 ] =[\tan(x)+1]\left[\dfrac{1-\tan x}{1+\tan x}+1\right]

= [ tan ( x ) + 1 ] [ 2 1 + tan x ] =[\tan(x)+1]\left[\dfrac{2}{1+\tan x}\right]

= 2 =2

There are 22 pairs of such angles, and including the case for 4 5 45^\circ , we would have log 2 2 23 \log_22^{23} as the answer, which is 23 23 .

Ben Habeahan
Sep 16, 2015

We can have:

1 + tan r = cos r + sin r cos r = 2 cos ( 4 5 r ) cos r ( Trigonometric R Method ) 1+\tan {r^{\circ}} = \frac{\cos r^{\circ} + \sin r^{\circ}}{\cos {r^{\circ}}} \\ = \frac{\sqrt2 \cos ( 45^{\circ} -r^{\circ})}{\cos r^{\circ}} ( \text{Trigonometric R Method})

So,

\( \begin{array}{} \log_{2}{[\prod_{r=1}^{45} (1+\tan r^{\circ})]} \\ = \log_{2}[\prod_{r=1}^{45}\frac{\sqrt2 \cos ( 45^{\circ} -r^{\circ})}{\cos r^{\circ}} ]\\=\log_{2}[\frac{(\sqrt2) ^{45} \cos ( 44^{\circ}) \cos ( 43^{\circ}) \cos ( 42^{\circ})\cdots \cos ( 1^{\circ} )\cos ( 0^{\circ} )}{\cos ( 1^{\circ}) \cos ( 2^{\circ}) \cos ( 3^{\circ})\cdots \cos ( 44^{\circ} )\cos ( 45^{\circ} )}] \\=\log_{2}[\frac{(\sqrt2) ^{45} \cos ( 1^{\circ}) \cos ( 2^{\circ}) \cos ( 3^{\circ})\cdots \cos ( 44^{\circ} )\cos ( 0^{\circ} )}{{ }\cos ( 1^{\circ}) \cos ( 2^{\circ}) \cos ( 3^{\circ})\cdots \cos ( 44^{\circ} )\cos ( 45^{\circ} )}]\\=\log_{2}[\frac{(\sqrt2) ^{45} }{\frac{\sqrt 2}{2}}]\\ =\boxed{23}\end{array} \)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...