lo g 2 ⎝ ⎛ r = 1 ∏ 4 5 ( 1 + tan r ∘ ) ⎠ ⎞
Find the sum of digits of the number above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We can have:
1 + tan r ∘ = cos r ∘ cos r ∘ + sin r ∘ = cos r ∘ 2 cos ( 4 5 ∘ − r ∘ ) ( Trigonometric R Method )
So,
\( \begin{array}{} \log_{2}{[\prod_{r=1}^{45} (1+\tan r^{\circ})]} \\ = \log_{2}[\prod_{r=1}^{45}\frac{\sqrt2 \cos ( 45^{\circ} -r^{\circ})}{\cos r^{\circ}} ]\\=\log_{2}[\frac{(\sqrt2) ^{45} \cos ( 44^{\circ}) \cos ( 43^{\circ}) \cos ( 42^{\circ})\cdots \cos ( 1^{\circ} )\cos ( 0^{\circ} )}{\cos ( 1^{\circ}) \cos ( 2^{\circ}) \cos ( 3^{\circ})\cdots \cos ( 44^{\circ} )\cos ( 45^{\circ} )}] \\=\log_{2}[\frac{(\sqrt2) ^{45} \cos ( 1^{\circ}) \cos ( 2^{\circ}) \cos ( 3^{\circ})\cdots \cos ( 44^{\circ} )\cos ( 0^{\circ} )}{{ }\cos ( 1^{\circ}) \cos ( 2^{\circ}) \cos ( 3^{\circ})\cdots \cos ( 44^{\circ} )\cos ( 45^{\circ} )}]\\=\log_{2}[\frac{(\sqrt2) ^{45} }{\frac{\sqrt 2}{2}}]\\ =\boxed{23}\end{array} \)
Problem Loading...
Note Loading...
Set Loading...
[ tan ( x ) + 1 ] [ tan ( 4 5 ∘ − x ) + 1 ]
= [ tan ( x ) + 1 ] [ 1 + tan x 1 − tan x + 1 ]
= [ tan ( x ) + 1 ] [ 1 + tan x 2 ]
= 2
There are 22 pairs of such angles, and including the case for 4 5 ∘ , we would have lo g 2 2 2 3 as the answer, which is 2 3 .