Product of the sines

Level pending

What is the value of

256 sin 1 0 sin 3 0 sin 5 0 sin 7 0 ? 256\sin10^\circ\sin30^\circ\sin50^\circ\sin70^\circ?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joel Tan
Jan 6, 2014

Firstly, we will find the value of s i n 10 s i n 50 s i n 70 sin 10 sin 50 sin 70 . This is equal to c o s 80 c o s 40 c o s 20 cos 80 cos 40 cos 20 because of the identity c o s x = s i n ( 90 x ) cos x=sin (90-x) .

Let the product of the three cosines be A. Then we compute 8 A × s i n 20 8A \times sin 20 . 8 s i n 20 c o s 20 c o s 40 c o s 80 = 4 s i n 40 c o s 40 c o s 80 = 2 s i n 80 c o s 80 = s i n 160 8 sin 20 cos 20 cos 40 cos 80=4 sin 40 cos 40 cos 80=2 sin 80 cos 80=sin 160 , because s i n ( 2 x ) = 2 s i n x c o s x sin (2x)=2 sin x cos x . Thus A is 1 8 × s i n 160 s i n 20 \frac{1}{8} \times \frac{sin 160}{sin 20} . As sin 160=sin (180-160)=sin 20, A is 1 8 \frac{1}{8} . Thus the expression is equal to 16, with the fact that sin 30=0.5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...