Product of Values on Roots

Algebra Level 5

Denote by x 1 , x 2 , x 3 , x 4 x_1,\ x_2,\ x_3,\ x_4 the roots of the polynomial f ( x ) = x 4 4 x 3 12 x 2 + 1 f(x)=x^4-4x^3-12x^2+1 . Denote g ( x ) = x 2 + 2 g(x)=x^2+2 . Find the value of the product g ( x 1 ) g ( x 2 ) g ( x 3 ) g ( x 4 ) . g(x_1)g(x_2)g(x_3)g(x_4) .


The answer is 969.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Caleb He
May 20, 2014

Note that f ( x ) = ( x x 1 ) ( x x 2 ) ( x x 3 ) ( x x 4 ) f(x)=(x-x_1)(x-x_2)(x-x_3)(x-x_4) . Now we look at the product we must find. We may factor each g ( x i ) g(x_i) as ( 2 i x i ) ( 2 i x i ) (-\sqrt{2}i-x_i)(\sqrt{2}i-x_i) . If we take the product of all the g ( x i ) g(x_i) , we have two products, the first being the equivalent of f ( 2 i ) f(-2i) and the second equivalent to f ( 2 i ) f(2i) . Evaluating both we get ( 29 + 8 2 i ) ( 29 8 2 i ) (29+8\sqrt{2}i)(29-8\sqrt{2}i) , which equals 969, our desired answer.

Translation of the above:

i = 1 4 g ( x i ) = i = 1 4 ( 2 i x i ) ( 2 i x i ) = [ i = 1 4 ( 2 i x i ) ] [ i = 1 4 ( 2 i x i ) ] = f ( 2 i ) f ( 2 i ) = 969 \begin{aligned} \prod_{i=1}^4 g(x_i) & = \prod_{i=1}^4 (-\sqrt{2}i-x_i)(\sqrt{2}i-x_i) = \left[ \prod_{i=1}^4 (-\sqrt{2}i-x_i) \right] \left[\prod_{i=1}^4 (\sqrt{2}i-x_i) \right] \\ & = f(\sqrt{2}i)f(-\sqrt{2}i) = 969 \end{aligned}

The motivation for this solution comes from the resultant of 2 polynomials. Namely, if x i x_i are the n n roots of f ( x ) f(x) and y j y_j are the (m) roots of g ( y ) g(y) , then f ( y j ) = ( y j x i ) = ( 1 ) n m g ( x i ) \prod f(y_j) = \prod (y_j - x_i) = (-1)^{nm} \prod g(x_i) .

All other correct solutions did a (pretty ugly) Vieta's formulae calculation.

Calvin Lin Staff - 7 years ago

can anyone tell me what's wrong in this

x 2 ( x 2 4 x 12 ) + 1 = 0 x^{2}( x^{2} - 4x - 12) + 1 = 0

x 2 = 1 o r ( x 2 ) 2 16 = 1 x^{2} = -1 or (x - 2)^{2} - 16 = 1 or vise versa

sandeep Rathod - 6 years, 7 months ago

Log in to reply

The all roots are not integers.

Niranjan Khanderia - 5 years, 11 months ago
Rishav Roy
May 20, 2014

Please note: ∏ represents multiplication of indicated terms for varying index; analogous to ∑. j is used as an index for eg. in xj, j is the index. g(x)=(x+√2 i)(x-√2 i) To find : ∏g(xj) ; j=1,2,3,4 . We can write that f(x)=∏(x-xj) ; j=1,2,3,4 f(√2)=∏(√2-xj) ; j=1,2,3,4 =∏(xj-√2) ; j=1,2,3,4 f(-√2)=∏(-√2-xj) ; j=1,2,3,4 =∏(√2+xj) ; j=1,2,3,4 f(√2)f(-√2)=∏(xj+√2)(xj-√2) ; j=1,2,3,4 =∏g(xj) ; j=1,2,3,4 Therefore ∏g(xj)= (29 + 8√2i)(29-8√2i) =969

Yong See Foo
May 20, 2014

By Vieta's formula we know that x i = 4 , i j x i x j = 12 , x 1 x 2 x 3 x 4 x i = 0 , x 1 x 2 x 3 x 4 = 1 \sum x_i=4, \sum_{i\neq j}x_ix_j=-12, \sum \frac{x_1x_2x_3x_4}{x_i}=0, x_1x_2x_3x_4=1 . i j ( x i x j ) 2 = ( i j x i x j ) 2 6 x 1 x 2 x 3 x 4 2 x 1 x 2 x 3 x 4 x i ( x 1 + x 2 + x 3 + x 4 x i ) = 144 6 8 f r a c x 1 x 2 x 3 x 4 x i + 2 a 1 a 2 a 3 a 4 = 146 \sum_{i\neq j}(x_ix_j)^2=(\sum_{i\neq j}x_ix_j)^2-6x_1x_2x_3x_4-2 \sum \frac{x_1x_2x_3x_4}{x_i}(x_1+x_2+x_3+x_4-x_i) =144-6-8\sum frac{x_1x_2x_3x_4}{x_i}+2a_1a_2a_3a_4=146 . ( x 1 x 2 x 3 x 4 x i ) 2 = ( x 1 x 2 x 3 x 4 x i ) 2 2 x 1 x 2 x 3 x 4 i j x i x j = 0 24 = 24 \sum (\frac{x_1x_2x_3x_4}{x_i})^2=(\sum \frac{x_1x_2x_3x_4}{x_i})^2-2x_1x_2x_3x_4\sum_{i\neq j}x_ix_j=0-24=-24 . x i 2 = ( x i ) 2 2 i j x i x j = 16 + 24 = 40 \sum x_i^2=(\sum x_i)^2-2\sum_{i\neq j}x_ix_j=16+24=40 . Expanding the term we want we get 16 + ( x 1 x 2 x 3 x 4 ) 2 + 4 i j ( x i x j ) 2 + 2 ( x 1 x 2 x 3 x 4 x i ) 2 + 8 x i 2 = 1 + 16 + 584 + 320 + 48 = 969 16+(x_1x_2x_3x_4)^2+4\sum_{i\neq j}(x_ix_j)^2+2\sum (\frac{x_1x_2x_3x_4}{x_i})^2+8\sum x_i^2=1+16+584+320+48=969 .

Vickie Wang
May 20, 2014

Because x 1 , x 2 , x 3 , x_1, x_2, x_3, and x 4 x_4 are roots of f ( x ) f(x) , we know that f ( x ) = ( x x 1 ) ( x x 2 ) ( x x 3 ) ( x x 4 ) = x 4 ( x 1 + x 2 + x 3 + x 4 ) x 3 + ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) x 2 ( x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 ) x + ( x 1 + x 2 + x 3 + x 4 ) . f(x) = (x-x_1)(x-x_2)(x-x_3)(x-x_4) \\ = x^4 - (x_1 + x_2 + x_3 + x_4)x^3 \\ + (x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4)x^2 \\- (x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)x + (x_1 + x_2 + x_3 + x_4).

Also, f ( x ) = x 4 4 x 3 12 x 2 + 1 f(x) = x^4 - 4x^3 -12 x^2 +1 , so x 1 + x 2 + x 3 + x 4 = 4 x_1 + x_2 + x_3 + x_4 = 4 , x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 = 12 x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 = -12 , x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 = 0 , x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 = 0, and x 1 + x 2 + x 3 + x 4 = 1 x_1 + x_2 + x_3 + x_4 = 1 .

Expanding the product g ( x 1 ) g ( x 2 ) g ( x 3 ) g ( x 4 ) g(x_1)g(x_2)g(x_3)g(x_4) , we get ( x 1 2 + 2 ) ( x 2 2 + 2 ) ( x 3 2 + 2 ) ( x 4 2 + 2 ) = ( x 1 x 2 x 3 x 4 ) 2 + 2 ( ( x 1 x 2 x 3 ) 2 + ( x 1 x 2 x 4 ) 2 + ( x 1 x 3 x 4 ) 2 + ( x 2 x 3 x 4 ) 2 ) + 4 ( ( x 1 x 2 ) 2 + ( x 1 x 3 ) 2 + ( x 1 x 4 ) 2 + ( x 2 x 3 ) 2 + ( x 2 x 4 ) 2 + ( x 3 x 4 ) 2 ) + 8 ( x 1 2 + x 2 2 + x 3 2 + x 4 2 ) + 16 (x_1^2+2)(x_2^2+2)(x_3^2+2)(x_4^2+2)\\ = (x_1x_2x_3x_4)^2 + 2((x_1x_2x_3)^2 + (x_1x_2x_4)^2 + (x_1x_3x_4)^2 + (x_2x_3x_4)^2) \\ + 4((x_1x_2)^2 + (x_1x_3)^2 + (x_1x_4)^2 + (x_2x_3)^2 + (x_2x_4)^2 + (x_3x_4)^2) \\+ 8(x_1^2 + x_2^2 + x_3^2 +x_4^2) +16 .

The value of the first term, ( x 1 x 2 x 3 x 4 ) 2 (x_1x_2x_3x_4)^2 , can easily be found using Vieta's Formula, so ( x 1 x 2 x 3 x 4 ) 2 = 1 2 = 1 (x_1x_2x_3x_4)^2 = 1^2 = 1 .

The value of the second term, 2 ( ( x 1 x 2 x 3 ) 2 + ( x 1 x 2 x 4 ) 2 + ( x 1 x 3 x 4 ) 2 + ( x 2 x 3 x 4 ) 2 ) 2((x_1x_2x_3)^2 + (x_1x_2x_4)^2 + (x_1x_3x_4)^2 + (x_2x_3x_4)^2) , is equal to 2 ( ( x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 ) 2 2 ( x 1 x 2 x 3 x 4 ) ( x 1 + x 2 + x 3 + x 4 ) ) 2((x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)^2 - 2(x_1x_2x_3x_4)(x_1+x_2+x_3+x_4)) By Vieta's, we have that this term is equal to 2 ( 0 2 2 1 ( 12 ) ) = 48 2( 0^2 - 2\cdot 1\cdot (-12)) = 48 .

The value of the third term, 4 ( ( x 1 x 2 ) 2 + ( x 1 x 3 ) 2 + ( x 1 x 4 ) 2 + ( x 2 x 3 ) 2 + ( x 2 x 4 ) 2 + ( x 3 x 4 ) 2 ) 4((x_1x_2)^2 + (x_1x_3)^2 + (x_1x_4)^2 + (x_2x_3)^2 + (x_2x_4)^2 + (x_3x_4)^2) , is equal to ( 4 ( ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) 2 2 ( x 1 + x 2 + x 3 + x 4 ) ( x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 ) + 2 ( x 1 x 2 x 3 x 4 ) ) (4((x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4)^2 \\ - 2(x_1 + x_2 + x_3 + x_4)(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4) \\ + 2(x_1x_2x_3x_4)) . By Vieta’s, we have that this term is equal to 4 ( ( 12 ) 2 2 4 0 + 2 1 ) = 584 4( (-12)^2 - 2\cdot 4\cdot 0 +2\cdot 1) = 584 .

The value of the fourth term, 8 ( x 1 2 + x 2 2 + x 3 2 + x 4 2 ) 8(x_1^2 + x_2^2 + x_3^2 +x_4^2) , is 8 ( ( x 1 + x 2 + x 3 + x 4 ) 2 2 ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) ) = 8 ( 4 2 2 ( 12 ) ) = 320. 8((x_1 + x_2 + x_3 + x_4)^2-2(x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3+ x_2x_4+x_3x_4)) \\=8(4^2 - 2\cdot (-12)) = 320.

Adding the terms gives us 1 + 48 + 584 + 320 + 16 = 969 1 + 48 + 584 + 320 +16 = \boxed {969} .

Typo in at lest in lines 5 and 8, you have written sum of root in place of product.

Niranjan Khanderia - 5 years, 11 months ago
Calvin Lin Staff
May 13, 2014

Denote the two roots of the polynomial g g by y 1 = 2 i y_1=\sqrt{2}i and y 2 = 2 i y_2=-\sqrt{2}i . By the product formula g ( x ) = ( x y 1 ) ( x y 2 ) g(x)=(x-y_1)(x-y_2) , the product g ( x 1 ) g ( x 2 ) g ( x 3 ) g ( x 4 ) g(x_1)g(x_2)g(x_3)g(x_4) can be written as ( x 1 y 1 ) ( x 1 y 2 ) ( x 2 y 1 ) ( x 2 y 2 ) ( x 3 y 1 ) ( x 3 y 2 ) ( x 4 y 1 ) ( x 4 y 2 ) (x_1-y_1)(x_1-y_2)(x_2-y_1)(x_2-y_2)(x_3-y_1)(x_3-y_2)(x_4-y_1)(x_4-y_2) Changing the order of terms in all eight factors, and grouping the factors differently, we get ( y 1 x 1 ) ( y 1 x 2 ) ( y 1 x 3 ) ( y 1 x 4 ) ( y 2 x 1 ) ( y 2 x 2 ) ( y 2 x 3 ) ( y 2 x 4 ) (y_1-x_1)(y_1-x_2)(y_1-x_3)(y_1-x_4)(y_2-x_1)(y_2-x_2)(y_2-x_3)(y_2-x_4) By the product formula for f ( x ) f(x) , this equals f ( y 1 ) f ( y 2 ) = ( 29 + 8 2 i ) ( 29 8 2 i ) = 969 f(y_1)f(y_2)= (29+8\sqrt{2}i)(29-8\sqrt{2}i)=969 .

Note: This product is called the resultant of f f and g g . Its symmetric definition is related to the Weil reciprocity law

Akbarali Surani
May 20, 2014

If a , b , c , d a,b,c,d are the roots of f ( x ) f(x) , a 2 , b 2 , c 2 , d 2 a^2,b^2,c^2,d^2 are the roots of f ( x ) f(\sqrt{x}) and a 2 + 2 , b 2 + 2 , c 2 + 2 , d 2 + 2 a^2+2,b^2+2,c^2+2,d^2+2 are the roots of f ( x 2 ) f(\sqrt{x-2}) i.e. g ( a ) , g ( b ) , g ( c ) , g ( d ) g(a),g(b),g(c),g(d) are the roots. f ( ( x 2 ) ) = 0 = > x 4 48 x 3 + 378 x 2 1356 x + 969 = 0 f(\sqrt{(x-2)})=0 => x^4-48x^3+378x^2-1356x+969=0 product of the roots is 969.

This looks like a great solution! What is wrong with it?

This was the most common mistake, and also the most common solution submitted.

Hint: Proof that 1 = 1 -1 = 1 .

Calvin Lin Staff - 7 years ago

The method may not be correct, but can you please explain how you arrived at last but one line? Thanks.

Niranjan Khanderia - 5 years, 11 months ago
Naishad Parikh
May 20, 2014

Sum of roots (x1, x2, x3, x4) taken 1 at a time = 4 --> a

Sum of roots taken 2 at a time = -12 --> b

Sum of roots taken 3 at a time = 0 --> c

Sum of roots taken 4 at a time(products of 4 roots) = 1 --> d

Now g(x1)g(x2)g(x3)g(x4) = (x1^2 + 2) (x2^2 + 2) (x3^2 + 2) (x4^2 + 2)

= d^2 + 2 * (sum of squares of roots taken 3 at a time) + 4 * (sum of squares of roots taken 2 at a time) + 8 * (sum of squares of roots taken 1 at a time) + 16

= d^2 + 2 * r + 4 * s + 8 * t +16

squaring equation 1 will give me t = 40

squaring equation 3 will give me r = 24

squaring equation 2 will give me s = 146

and d = 1

so final answer would be 1 + 2 * 24 + 4 * 146 + 8 * 40 + 16 = 969

Kevin Sun
May 20, 2014

First we construct the polynomial with roots x 1 2 , x 2 2 , x 3 2 , x 4 2 x_1^2, x_2^2, x_3^2, x_4^2 . These must satisfy ( x ) 2 4 ( x ) x 12 ( x ) + 1 = 0 (x)^2-4(x)\sqrt{x}-12(x)+1=0 for each x = x 1 2 , x 2 2 , x 3 2 , x 4 2 x = x_1^2, x_2^2, x_3^2, x_4^2 . Expanding, we get ( x 2 12 x + 1 ) 2 = 16 x 3 (x^2-12x+1)^2=16x^3 , so x 4 40 x 3 + 146 x 2 24 x + 1 = 0 x^4-40x^3+146x^2-24x+1=0 .

Now we need to construct the polynomial with roots x 1 2 + 2 , x 2 2 + 2 , x 3 2 + 2 , x 4 2 + 2 x_1^2+2, x_2^2+2, x_3^2+2, x_4^2+2 . Then ( x 2 ) 4 40 ( x 2 ) 3 + 146 ( x 2 ) 2 24 ( x 2 ) + 1 = 0 (x-2)^4-40(x-2)^3+146(x-2)^2-24(x-2)+1=0 for each x = x 1 2 + 2 , x 2 2 + 2 , x 3 2 + 2 , x 4 2 + 2 x = x_1^2+2, x_2^2+2, x_3^2+2, x_4^2+2 , so x 4 48 x 3 + 410 x 2 1120 x + 969 = 0 x^4-48x^3+410x^2-1120x+969=0 . This means that the product of the g ( x i ) g(x_i) is the product of the roots of this new polynomial, or 969 \fbox{969} .

Gopal Kedia
May 20, 2014

let g(x)=y y=x^2+2 x=[y-2]^1/2 ........(1) f(x)=x^4-4x^3-12x^2+1 f(x)=0 for roots and substitute (1) you will get y^4 term as 1 and constant term as 969 therefore products of all y is 969 i.e. g(x1).g(x2).g(x3).g(x4)=969

Finding the roots by graphing in TI 83 and solving.

Aneesh Kundu
Dec 9, 2014

We first find a polynomial with roots x 1 2 , x 2 2 , x 3 2 , x 4 2 x^2_1, x^2_2, x^2_3, x^2_4 Let y y be a root of the transformed equation. y = x 2 y=x^2 x 4 4 x 3 12 x 2 + 1 = 0 x^4-4x^3-12x^2+1=0 ( x 4 12 x 2 + 1 ) 2 = ( 4 x 3 ) 2 \Rightarrow (x^4-12x^2+1)^2=(4x^3)^2 Expand to get x 8 40 x 6 + 146 x 4 24 x 2 + 1 = 0 x^8-40x^6+146x^4-24x^2+1=0 Reverting back to y y y 4 40 y 3 + 146 y 2 24 y + 1 = 0 y^4-40y^3+146y^2-24y+1=0 Let h ( y ) = y 4 40 y 3 + 146 y 2 24 y + 1 = 0 h(y)=y^4-40y^3+146y^2-24y+1=0

Since x 1 2 , x 2 2 , x 3 2 , x 4 2 x^2_1, x^2_2, x^2_3, x^2_4 are the roots of h ( y ) h(y) , we have

h ( y ) = i = 1 4 ( y x i 2 ) h(y)=\displaystyle\prod_{i=1}^4 (y-x^2_i)

we are required to find i = 1 4 ( 2 + x i 2 ) = i = 1 4 ( 2 x i 2 ) = h ( 2 ) \displaystyle\prod_{i=1}^4 (2+x^2_i)=\displaystyle\prod_{i=1}^4 (-2-x^2_i)=h(-2)

h ( 2 ) = 969 \boxed{h(-2)=969}

Sai Krishna
May 20, 2014

given f(x) =(x-x1)(x-x2)(x-x3)(x-x4) then the equation f(sqrt(x-2)) will have roots as x1^2+2, x2^2+2 ,x3^2+2 ,x4^2+2. the product of the roots can be found from this new transformed equation.

Abhishek Sinha
May 20, 2014

Let y = x 2 + 2 y=x^2+2 , where x x is a n y {any} of the four roots of f ( x ) f(x) . The key technique is to get a fourth degree equation in y y and determine the required product from it.
We have, y 2 = x 4 + 4 x 2 + 4 y^2=x^4+4x^2+4
but x x (being a root of f ( x ) f(x) ), satisfies x 4 = 4 x 3 + 12 x 2 1 x^4=4x^3+12x^2-1 . Substituting this value of x x in the above expression, we get y 2 = 4 x 3 + 16 x 2 + 3 y^2=4x^3+16x^2+3
= 4 x 2 ( x + 4 ) + 3 = 4x^2(x+4)+3
= 4 ( y 2 ) ( x + 4 ) + 3 = 4(y-2)(x+4)+3
= 4 ( y 2 ) x + 16 y 29 =4(y-2)x+16y-29
Transposing the last two terms to LHS and squaring, we get ( y 2 16 y + 29 ) 2 = 16 ( y 2 ) 3 (y^2-16y+29)^2=16(y-2)^3 The required product is simply the constant term of the above equation and is given by 2 9 2 + 16 × 8 = 969 29^2+16\times 8 = 969





0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...