Product Thing

Calculus Level 3

n = 1 ( 4 n 3 ) ( 4 π 2 n 2 1 ) ( 4 n + 1 ) ( π 2 ( 1 2 n ) 2 1 ) = a b π tan ( c d ) \large \prod _{n=1}^{\infty } \frac{(4 n-3) \left(4 \pi ^2 n^2-1\right)}{(4 n+1) \left(\pi ^2 (1-2 n)^2-1\right)} = \frac{a}{b} \pi \tan \left(\frac{c}{d}\right)

where a a , b b , c c , and d d are positive integers, with gcd ( a , b ) = gcd ( c , d ) = 1 \gcd(a,b) = \gcd(c,d) = 1 . Submit a + b + c + d a+b+c+d .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 28, 2017

Relevant wiki: Stirling's Formula

P = lim m n = 1 m ( 4 n 3 ) ( 4 π 2 n 2 1 ) ( 4 n + 1 ) ( π 2 ( 1 2 n ) 2 1 ) = lim m n = 1 m 4 n 3 4 n + 1 n = 1 m 4 π 2 n 2 ( 1 1 4 π 2 n 2 ) π 2 ( 2 n 1 ) 2 ( 1 1 π 2 ( 2 n 1 ) 2 ) = lim m 1 5 9 ( 4 m 3 ) 5 9 ( 4 m 3 ) ( 4 m + 1 ) 4 m ( m ! ) 2 ( ( 2 m 1 ) ! ! ) 2 n = 1 m ( 1 1 4 n 2 π 2 ) ( 1 1 ( 2 n ) 2 π 2 ) ( 1 1 ( 2 n 1 ) 2 π 2 ) ( 1 1 ( 2 n ) 2 π 2 ) = lim m 1 4 m + 1 4 m ( m ! ) 2 ( 2 m m ! ) 2 ( ( 2 m ) ! ) 2 n = 1 m ( 1 1 4 n 2 π 2 ) 2 ( 1 1 n 2 π 2 ) Using identity sin x x = k = 1 ( 1 x 2 k 2 π 2 ) = lim m 1 4 m + 1 4 2 m ( m ! ) 4 ( ( 2 m ) ! ) 2 ( 2 sin 1 2 ) 2 sin 1 By Stirling’s formula n ! 2 π n ( n e ) n = lim m 1 4 m + 1 4 2 m ( 2 π m m m e m ) 4 ( 4 π m ( 2 m ) 2 m e 2 m ) 2 4 sin 2 1 2 2 sin 1 2 cos 1 2 = lim m 1 4 m + 1 4 2 m 4 π 2 4 2 m m 4 m + 2 e 4 m 4 π 4 2 m m 4 m + 1 e 4 m 2 sin 1 2 cos 1 2 = lim m 1 4 m + 1 m π 2 tan 1 2 = 1 2 π tan 1 2 \begin{aligned} P & = \lim_{m \to \infty} \prod_{n=1}^m \frac {(4n-3)(4\pi^2n^2-1)}{(4n+1)(\pi^2(1-2n)^2-1)} \\ & = \lim_{m \to \infty} \prod_{n=1}^m \frac {4n-3}{4n+1} \prod_{n=1}^m \frac {4\pi^2n^2 \left(1-\frac 1{4\pi^2n^2}\right)}{\pi^2(2n-1)^2 \left(1-\frac 1{\pi^2(2n-1)^2}\right)} \\ & = \lim_{m \to \infty} \frac {1\cdot 5 \cdot 9 \cdots (4m-3)}{5 \cdot 9 \cdots (4m-3)(4m+1)} \cdot \frac {4^m(m!)^2}{((2m-1)!!)^2} \prod_{n=1}^m \frac {\left(1-\frac 1{4n^2\pi^2}\right)\left(1-\frac 1{(2n)^2\pi^2}\right)}{\left(1-\frac 1{(2n-1)^2\pi^2}\right)\left(1-\frac 1{(2n)^2\pi^2}\right)} \\ & = \lim_{m \to \infty} \frac 1{4m+1} \cdot \frac {4^m(m!)^2(2^mm!)^2}{((2m)!)^2} \prod_{n=1}^m \color{#3D99F6} \frac {\left(1-\frac 1{4n^2\pi^2}\right)^2}{\left(1-\frac 1{n^2\pi^2}\right)} & \small \color{#3D99F6} \text{Using identity } \frac {\sin x}x = \prod_{k=1}^\infty \left(1-\frac {x^2}{k^2\pi^2}\right) \\ & = \lim_{m \to \infty} \frac 1{4m+1} \cdot \frac {4^{2m}({\color{#D61F06}m!})^4}{({\color{#D61F06}(2m)!})^2} \cdot \color{#3D99F6} \frac {\left(2\sin \frac 12\right)^2}{\sin 1} & \small \color{#D61F06} \text{By Stirling's formula } n! \sim \sqrt{2\pi n}\left(\frac ne\right)^n \\ & = \lim_{m \to \infty} \frac 1{4m+1} \cdot \frac {4^{2m}({\color{#D61F06}\sqrt{2\pi m}m^m e^{-m}})^4}{({\color{#D61F06}\sqrt{4\pi m}(2m)^{2m} e^{-2m}})^2} \cdot \frac {4 \sin^2 \frac 12}{2 \sin \frac 12 \cos \frac 12} \\ & = \lim_{m \to \infty} \frac 1{4m+1} \cdot \frac {4^{2m}4\pi^2 4^{2m}m^{4m+2} e^{-4m}}{4\pi 4^{2m} m^{4m+1} e^{-4m}} \cdot \frac {2 \sin \frac 12}{\cos \frac 12} \\ & = \lim_{m \to \infty} \frac 1{4m+1} \cdot m\pi \cdot 2 \tan \frac 12 \\ & = \frac 12 \pi \tan \frac 12 \end{aligned}

a + b + c + d = 1 + 2 + 1 + 2 = 6 \implies a+b+c+d = 1+2+1+2 = \boxed{6}

Here's a hint/partial solution:

n = 1 ( ( 1 ) n log ( x 2 π 2 n 2 ) ( 1 ) n log ( π 2 4 π 2 n 2 ) ) + log ( 2 x π ) = n = 1 π 2 x 2 ( 1 ) n z z 2 ( π n ) 2 d z + π 2 x 1 z d z = π 2 x ( 2 z n = 1 ( 1 ) n z 2 ( π n ) 2 + 1 z ) d z = π 2 x 1 sin ( z ) d z = log ( sin ( x 2 ) ) log ( cos ( x 2 ) ) \displaystyle\sum _{n=1}^{\infty } \left((-1)^n \log \left(x^2-\pi ^2 n^2\right)-(-1)^n \log \left(\frac{\pi ^2}{4}-\pi ^2 n^2\right)\right)+\log \left(\frac{2 x}{\pi }\right)=\displaystyle\sum _{n=1}^{\infty } \int_{\frac{\pi }{2}}^x \frac{2 (-1)^n z}{z^2-(\pi n)^2} \, dz+\int_{\frac{\pi }{2}}^x \frac{1}{z} \, dz=\displaystyle\int_{\frac{\pi }{2}}^x \left(2 z \displaystyle\sum _{n=1}^{\infty } \frac{(-1)^n}{z^2-(\pi n)^2}+\frac{1}{z}\right) \, dz=\displaystyle\int_{\frac{\pi }{2}}^x \frac{1}{\sin (z)} \, dz=\log \left(\sin \left(\frac{x}{2}\right)\right)-\log \left(\cos \left(\frac{x}{2}\right)\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...