Product under Summation (Part 1)

Calculus Level 5

S = 1 + 1 4 + 1 16 ( 5 4 ) + 1 36 ( 5 17 4 16 ) + 1 64 ( 5 17 37 4 16 36 ) + = 1 + 1 4 + r = 1 [ 1 4 ( r + 1 ) 2 k = 1 r ( 1 4 k 2 + 1 ) ] \begin{aligned} && \text{S} = 1 + \dfrac{1}{4} + \dfrac {1}{16}\left(\dfrac{5}{4} \right) + \dfrac {1}{36}\left(\dfrac{5 \cdot 17}{4 \cdot 16} \right) + \dfrac{1}{64} \left(\dfrac{5 \cdot 17 \cdot 37 }{4 \cdot 16 \cdot 36} \right) + \cdots \\ &&= 1 + \dfrac14 +\sum_{r=1}^\infty \left [ \dfrac1{4(r+1)^2} \prod_{k=1}^r \left( \dfrac1{4k^2} + 1 \right) \right ] \end{aligned}

S \text{S} can be represented as A π B sinh ( C π D E ) \dfrac{\text{A}}{\pi^{\text{B}}} \sinh \left( \dfrac{\text{C}\pi ^{\text{D}}}{\text{E}} \right) where A , B , C , D \text{A},\text{B},\text{C},\text{D} and E \text{E} are positive integers with C , E \text{C},\text{E} coprime. Compute A + B + C + D E \text{A}+\text{B}+\text{C}+\text{D}-\text{E} .


See also : Part 2 , Part 3 , Part 4


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Isaac Buckley
Jan 16, 2016

Let's just rewrite it in a way to make it slightly more obvious what we need to do.

S = 1 + 1 2 2 + 1 4 2 ( 1 + 1 2 2 ) + 1 6 2 ( 1 + 1 2 2 ) ( 1 + 1 4 2 ) + 1 8 2 ( 1 + 1 2 2 ) ( 1 + 1 4 2 ) ( 1 + 1 6 2 ) + S= 1 + \frac{1}{2^2} + \frac{1}{4^2}\left(1+\frac{1}{2^2} \right) + \frac{1}{6^2}\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{4^2} \right) + \frac{1}{8^2} \left(1+\frac{1}{2^2}\right) \left(1+\frac{1}{4^2}\right) \left(1+\frac{1}{6^2} \right) + \ldots

Oh look, we can factorise 1 + 1 2 2 1+\frac{1}{2^2} .

S = ( 1 + 1 2 2 ) [ 1 + 1 4 2 + 1 6 2 ( 1 + 1 4 2 ) + 1 8 2 ( 1 + 1 4 2 ) ( 1 + 1 6 2 ) + ] S=\left( 1 + \frac{1}{2^2}\right) \left[1+ \frac{1}{4^2} + \frac{1}{6^2}\left(1+\frac{1}{4^2} \right) + \frac{1}{8^2} \left(1+\frac{1}{4^2}\right) \left(1+\frac{1}{6^2} \right) + \ldots\right]

Wait, now we can factorise 1 + 1 4 2 1+\frac{1}{4^2} .

S = ( 1 + 1 2 2 ) ( 1 + 1 4 2 ) [ 1 + 1 6 2 + 1 8 2 ( 1 + 1 6 2 ) + ] S=\left( 1 + \frac{1}{2^2}\right) \left(1+ \frac{1}{4^2}\right)\left[1 + \frac{1}{6^2}+ \frac{1}{8^2} \left(1+\frac{1}{6^2} \right) + \ldots\right]

Now we can factorise 1 + 1 6 2 1+\frac{1}{6^2} ! So if we keep doing it we eventually get:

S = n = 1 ( 1 + 1 ( 2 n ) 2 ) S=\prod_{n=1}^{\infty} \left(1+\frac{1}{(2n)^2}\right)

Using the fact that sinh ( x ) x = n = 1 ( 1 + x 2 π 2 n 2 ) \large \frac{\sinh(x)}{x}=\prod\limits_{n=1}^{\infty} \left(1+\frac{x^2}{\pi^{2}n^{2}}\right) and by letting x = π 2 \large x=\frac{\pi}{2} we get:

S = sinh ( π 2 ) π 2 \large S=\frac{\sinh\left(\frac{\pi}{2}\right)}{\frac{\pi}{2}}


Can anyone rigorously show that the infinite series and the infinite product are identical?

Mark Hennings
Jan 17, 2016

It's just a telescoping series! n = 1 N + 1 ( 1 + 1 4 n 2 ) n = 1 N ( 1 + 1 4 n 2 ) = 1 4 ( N + 1 ) 2 n = 1 N ( 1 + 1 4 n 2 ) \prod_{n=1}^{N+1} \left(1 + \frac{1}{4n^2}\right) - \prod_{n=1}^N \left(1 + \frac{1}{4n^2}\right) \; = \; \frac{1}{4(N+1)^2}\prod_{n=1}^N \left(1 + \frac{1}{4n^2}\right) and so N = 1 M 1 4 ( N + 1 ) 2 n = 1 N ( 1 + 1 4 n 2 ) = n = 1 M + 1 ( 1 + 1 4 n 2 ) 5 4 , \sum_{N=1}^M \frac{1}{4(N+1)^2}\prod_{n=1}^N \left(1 + \frac{1}{4n^2}\right) \; = \; \prod_{n=1}^{M+1} \left(1 + \frac{1}{4n^2}\right) - \frac54 \;, which proves, letting M M \to \infty , that 5 4 + N = 1 1 4 ( N + 1 ) 2 n = 1 N ( 1 + 1 4 n 2 ) = n = 1 ( 1 + 1 4 n 2 ) = 2 π sinh ( 1 2 π ) . \frac54 + \sum_{N=1}^\infty \frac{1}{4(N+1)^2}\prod_{n=1}^N \left(1 + \frac{1}{4n^2}\right) \; = \; \prod_{n=1}^\infty \left(1 + \frac{1}{4n^2}\right) \; = \; \frac{2}{\pi}\sinh\big(\tfrac12\pi\big) \;.

How did u get -5/4 , plz elaborate.

Seong Ro - 5 years, 4 months ago

Log in to reply

The second identity could be written m = 1 M 1 4 ( N + 1 ) 2 n = 1 N ( 1 + 1 4 n 2 ) = n = 1 M + 1 ( 1 + 1 4 n 2 ) n = 1 1 ( 1 + 1 4 n 2 ) , \sum_{m=1}^M \frac{1}{4(N+1)^2}\prod_{n=1}^N \left(1 + \frac{1}{4n^2}\right) \; = \; \prod_{n=1}^{M+1} \left(1 + \frac{1}{4n^2}\right) - \prod_{n=1}^1 \left(1 + \frac{1}{4n^2}\right) \;, using the telescoping idea. That final product is equal to 5 4 \tfrac54 .

Mark Hennings - 5 years, 4 months ago

Log in to reply

Ohk, thanx I got it :)

Seong Ro - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...