S = 1 + 3 2 1 ( 2 1 ) + 5 2 1 ( 2 ⋅ 4 1 ⋅ 3 ) + 7 2 1 ( 2 ⋅ 4 ⋅ 6 1 ⋅ 3 ⋅ 5 ) + … = 1 + r = 1 ∑ ∞ [ ( 2 r + 1 ) 2 1 k = 1 ∏ r ( 2 k 2 k − 1 ) ]
S can be expressed as
C A π ln ( B )
where A , B and C are positive integers, A and C are coprime and B is a prime number.
Evaluate A + B + C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let f ( a ) = 1 + a 1 + r = 1 ∑ ∞ [ ( 2 r + a + 1 ) 1 k = 1 ∏ r ( 2 k 2 k − 1 ) ]
= ∫ 0 1 x a d x + r = 1 ∑ ∞ [ k = 1 ∏ r ( 2 k 2 k − 1 ) ∫ 0 1 x 2 r + a d x ]
= ∫ 0 1 x a r = 1 ∑ ∞ [ x 2 r k = 1 ∏ r ( 2 k 2 k − 1 ) d x ] + ∫ 0 1 x a d x
Using infinite binomial series, we have,
f ( a ) = ∫ 0 1 x a ( 1 − x 2 1 − 1 ) d x + ∫ 0 1 x a d x
= ∫ 0 1 1 − x 2 x a d x
Let x = sin θ
⟹ f ( a ) = ∫ 0 2 π sin a θ d θ
= 2 1 B ( 2 p + 1 , 2 1 )
= 2 1 Γ ( 2 a + 2 ) Γ ( 2 a + 1 ) Γ ( 2 1 )
Using Gamma duplication formula, we have,
f ( a ) = 2 a + 1 π Γ 2 ( 2 a + 2 ) Γ ( a + 1 ) ; a > − 1
Required series is − f ′ ( 0 ) . Evaluating it, we have,
S = 2 π ln 2