Product with e

Calculus Level 2

n = 0 e 1 n ! = ? \large \prod_{n=0}^{\infty}e^{\frac{1}{n!}} = \ ?

Round your answer to the nearest tenth.


The answer is 15.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 15, 2020

n = 0 e 1 n ! = e 1 0 ! e 1 1 ! e 1 2 ! = e 1 0 ! + 1 1 ! = 1 2 ! + = e e 15.2 \large \prod_{n=0}^\infty e^{\frac 1{n!}} = e^{\frac 1{0!}} e^{\frac 1{1!}} e^{\frac 1{2!}} \cdots = e^{\frac 1{0!}+\frac 1{1!} = \frac 1{2!} + \cdots} = e^e \approx \boxed{15.2}

S. P.
Jul 14, 2020

Represent e^x as a summation: e x = n = 0 x n n ! e^x=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}

Convert Summation to Product: n = 0 x n n ! = ln ( n = 0 e x n n ! ) \sum_{n=0}^{\infty}\frac{x^{n}}{n!}=\ln\left(\prod_{n=0}^{\infty}e^{\frac{x^{n}}{n!}}\right)

Replace Summation with e^x: e x = ln ( n = 0 e x n n ! ) e^x=\ln\left(\prod_{n=0}^{\infty}e^{\frac{x^{n}}{n!}}\right)

Solve for Product: e e x = n = 0 e x n n ! e^{e^{x}}=\prod_{n=0}^{\infty}e^{\frac{x^{n}}{n!}}

Set x = 1: e e = n = 0 e 1 n ! e^{e}=\prod_{n=0}^{\infty}e^{\frac{1}{n!}}

Round e^e: e e 15.2 e^e \approx 15.2

You need to replace k k with \infty in every step.

Vilakshan Gupta - 11 months ago

Log in to reply

Thanks you for notifying me.

S. P. - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...