Find the value of : 1 6 s i n 1 4 4 ° s i n 1 0 8 ° s i n 7 2 ° s i n 3 6 °
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There are some typos in the solution, like in the 4 th line, it should be sin 3 6 ∘ = 2 sin 1 8 ∘ cos 1 8 ∘ . Following that, despite some errors, you calculated the value correctly because the final quadratic equation obtained was correct. Also, the transition from line sin 1 8 ∘ = 1 − 2 sin 2 1 8 ∘ − sin 2 1 8 ∘ to the line 4 sin 2 1 8 ∘ + 2 sin 1 8 ∘ − 1 = 0 is incorrect. You should correct the minor mistakes ASAP!
Problem Loading...
Note Loading...
Set Loading...
Since sin 3 6 ∘ = sin 1 4 4 ∘ , sin 7 2 ∘ = sin 1 0 8 ∘ and sin 7 2 ∘ = cos 1 8 ∘ then,
1 6 sin 1 4 4 ∘ sin 1 0 8 ∘ sin 7 2 ∘ sin 3 6 ∘ = 1 6 sin 2 3 6 ∘ sin 2 7 2 ∘ = 1 6 sin 2 3 6 ∘ cos 2 1 8 ∘
Since sin 3 6 ∘ = cos 5 4 ∘ ,
⇒ sin 1 8 ∘ cos 1 8 ∘ = cos 3 6 ∘ cos 1 8 ∘ − sin 3 6 ∘ sin 1 8 ∘
= ( 1 − 2 sin 2 1 8 ∘ cos 1 8 ∘ − ( sin 1 8 ∘ cos 1 8 ∘ ) sin 1 8 ∘
⇒ sin 1 8 ∘ = 1 − 2 sin 2 1 8 ∘ − sin 2 1 8 ∘
⇒ 4 sin 2 1 8 ∘ + 2 sin 1 8 ∘ − 1 = 0
⇒ sin 1 8 ∘ = 8 − 2 + 4 + 1 6 = 4 5 − 1
⇒ cos 3 6 ∘ = 1 − 2 sin 2 1 8 ∘ = 1 − 2 ( 4 5 − 1 ) 2 = 1 − 2 ( 1 6 6 − 2 5 ) = 4 5 + 1
We note that:
1 6 sin 1 4 4 ∘ sin 1 0 8 ∘ sin 7 2 ∘ sin 3 6 ∘ = 1 6 sin 2 3 6 ∘ cos 2 1 8 ∘
= 1 6 ( 1 − cos 2 3 6 ∘ ) ( 1 − sin 2 1 8 ∘ )
= 1 6 ( 1 + cos 3 6 ∘ ) ( 1 − cos 3 6 ∘ ) ( 1 + sin 1 8 ∘ ) ( 1 − sin 1 8 ∘ )
= 1 6 ( 1 + 4 5 + 1 ) ( 1 − 4 5 + 1 ) ( 1 + 4 5 − 1 ) ( 1 − 4 5 − 1 )
= 1 6 ( 4 5 + 5 ) ( 4 5 − 5 ) ( 4 3 + 5 ) ( 4 3 − 5 )
= 1 6 ( 1 6 2 5 − 5 ) ( 1 6 9 − 5 ) = 1 6 ( 1 6 2 0 ) ( 1 6 4 ) = 5