Product

Geometry Level 3

Find the value of : 16 s i n 144 ° s i n 108 ° s i n 72 ° s i n 36 ° 16sin144°sin108°sin72°sin36°


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 17, 2014

Since sin 3 6 = sin 14 4 \sin {36^\circ} = \sin {144^\circ} , sin 7 2 = sin 10 8 \sin {72^\circ} = \sin {108^\circ} and sin 7 2 = cos 1 8 \sin {72^\circ} = \cos {18^\circ} then,

16 sin 14 4 sin 10 8 sin 7 2 sin 3 6 = 16 sin 2 3 6 sin 2 7 2 = 16 sin 2 3 6 cos 2 1 8 16 \sin {144^\circ} \sin {108^\circ} \sin {72^\circ} \sin {36^\circ} = 16 \sin^2 {36^\circ} \sin^2 {72^\circ} = 16 \sin^2 {36^\circ} \cos^2 {18^\circ}

Since sin 3 6 = cos 5 4 \sin {36^\circ} = \cos {54^\circ} ,

sin 1 8 cos 1 8 = cos 3 6 cos 1 8 sin 3 6 sin 1 8 \Rightarrow \sin {18^\circ} \cos {18^\circ} = \cos {36^\circ} \cos {18^\circ} - \sin {36^\circ} \sin {18^\circ}

= ( 1 2 sin 2 1 8 cos 1 8 ( sin 1 8 cos 1 8 ) sin 1 8 \quad = (1 - 2 \sin^2 {18^\circ} \cos {18^\circ} - (\sin {18^\circ} \cos {18^\circ}) \sin {18^\circ}

sin 1 8 = 1 2 sin 2 1 8 sin 2 1 8 \Rightarrow \sin {18^\circ} = 1 - 2 \sin^2 {18^\circ} - \sin^2 {18^\circ}

4 sin 2 1 8 + 2 sin 1 8 1 = 0 \Rightarrow 4 \sin^2 {18^\circ} + 2 \sin {18^\circ} - 1 = 0

sin 1 8 = 2 + 4 + 16 8 = 5 1 4 \Rightarrow \sin {18^\circ} = \dfrac {-2+\sqrt{4+16}} {8} = \dfrac {\sqrt{5} - 1} {4}

cos 3 6 = 1 2 sin 2 1 8 = 1 2 ( 5 1 4 ) 2 = 1 2 ( 6 2 5 16 ) = 5 + 1 4 \Rightarrow \cos {36^\circ} = 1 - 2 \sin^2 {18^\circ} = 1 - 2 \left( \dfrac {\sqrt{5} - 1} {4} \right) ^2 = 1 - 2 \left( \dfrac {6 - 2\sqrt{5}} {16} \right) = \dfrac {\sqrt{5} + 1} {4}

We note that:

16 sin 14 4 sin 10 8 sin 7 2 sin 3 6 = 16 sin 2 3 6 cos 2 1 8 16 \sin {144^\circ} \sin {108^\circ} \sin {72^\circ} \sin {36^\circ} = 16 \sin^2 {36^\circ} \cos^2 {18^\circ}

= 16 ( 1 cos 2 3 6 ) ( 1 sin 2 1 8 ) = 16 ( 1 - \cos^2 {36^\circ} ) (1 - \sin^2 {18^\circ} )

= 16 ( 1 + cos 3 6 ) ( 1 cos 3 6 ) ( 1 + sin 1 8 ) ( 1 sin 1 8 ) = 16 ( 1 + \cos {36^\circ} ) ( 1 - \cos {36^\circ} ) (1 + \sin {18^\circ} ) (1 - \sin {18^\circ} )

= 16 ( 1 + 5 + 1 4 ) ( 1 5 + 1 4 ) ( 1 + 5 1 4 ) ( 1 5 1 4 ) = 16 \left( 1 + \dfrac {\sqrt{5} + 1} {4} \right) \left(1 - \dfrac {\sqrt{5} + 1} {4} \right) \left( 1 + \dfrac {\sqrt{5} - 1} {4} \right) \left( 1 - \dfrac {\sqrt{5} - 1} {4} \right)

= 16 ( 5 + 5 4 ) ( 5 5 4 ) ( 3 + 5 4 ) ( 3 5 4 ) = 16 \left( \dfrac {5+\sqrt{5}} {4} \right) \left(\dfrac {5-\sqrt{5}} {4} \right) \left(\dfrac {3+\sqrt{5}} {4}\right) \left(\dfrac {3-\sqrt{5}} {4}\right)

= 16 ( 25 5 16 ) ( 9 5 16 ) = 16 ( 20 16 ) ( 4 16 ) = 5 = 16 \left( \dfrac {25-5} {16} \right) \left(\dfrac {9-5} {16} \right) = 16 \left( \dfrac {20} {16} \right) \left(\dfrac {4} {16} \right) = \boxed {5}

There are some typos in the solution, like in the 4 th 4^{\textrm{th}} line, it should be sin 3 6 = 2 sin 1 8 cos 1 8 \sin36^{\circ} = 2\sin18^{\circ}\cos18^{\circ} . Following that, despite some errors, you calculated the value correctly because the final quadratic equation obtained was correct. Also, the transition from line sin 1 8 = 1 2 sin 2 1 8 sin 2 1 8 \sin {18^\circ} = 1 - 2 \sin^2 {18^\circ} - \sin^2 {18^\circ} to the line 4 sin 2 1 8 + 2 sin 1 8 1 = 0 4 \sin^2 {18^\circ} + 2 \sin {18^\circ} - 1 = 0 is incorrect. You should correct the minor mistakes ASAP!

Prasun Biswas - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...