Limit's theorems

Calculus Level 3

lim x 0 ( ( 1 + x ) 2018 1 x ( 1 + x ) 2017 1 x ( 1 + x ) 2016 1 x ( 1 + x ) 2 1 x 1 ) \lim_{x\to 0 }\left(\dfrac{\,(1+x)^{2018}-1}{x}\cdot \dfrac{\,(1+x)^{2017}-1}{x}\cdot \dfrac{\,(1+x)^{2016}-1}{x}\cdot\cdots \dfrac{\,(1+x)^{2}-1}{x}\cdot 1 \right) If the value of the above limit can be expressed as a ! a! . Find the value of a a .


Notation: ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The given limit is:

L = lim x 0 n = 2 2018 ( 1 + x ) n 1 x By binomial expansion = n = 2 2018 lim x 0 ( 1 + n x + n ( n 1 ) 2 ! x 2 + ) 1 x Divide up and down by x = n = 2 2018 lim x 0 ( n + n ( n 1 ) 2 ! x + n ( n 1 ) ( n 2 ) 3 ! x 2 ) = n = 2 2018 n = 2018 ! \begin{aligned} L & = \lim_{x \to 0} \prod_{n=2}^{2018} \frac {{\color{#3D99F6}(1+x)^n}-1}x & \small \color{#3D99F6} \text{By binomial expansion} \\ & = \prod_{n=2}^{2018} \lim_{x \to 0} \frac {{\color{#3D99F6}\left(1+nx + \frac {n(n-1)}{2!}x^2 + \cdots \right)}-1}x & \small \color{#3D99F6} \text{Divide up and down by }x \\ & = \prod_{n=2}^{2018} \lim_{x \to 0} \left(n + \frac {n(n-1)}{2!}x + \frac {n(n-1)(n-2)}{3!}x^2 \cdots \right) \\ & = \prod_{n=2}^{2018} n = 2018! \end{aligned}

Therefore, a = 2018 a=\boxed{2018} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...