Evaluate n → ∞ lim r = 3 ∏ n r 3 + 8 r 3 − 8
Here ∏ represents product of function.
The answer is in the form b a , express it in the form of a + b .
To try more such problems click here .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How did you get n 2 + 5 in the last step ?
i'm going to use a simple telescoping sum to determine the answer. first off, S = k = 3 ∏ ∞ ( k 3 + 8 k 3 − 8 ) taking natural logarithm on both side ln ( S ) = k = 3 ∑ ∞ ( ln ( ( k + 2 ) ( k 2 − 2 k + 4 ) ( k − 2 ) ( k 2 + 2 k + 4 ) ) ) expanding by rules of logarithms, ln S = k = 3 ∑ ∞ ( ln ( k − 2 ) − ln ( k + 2 ) + ln ( k 2 + 2 k + 4 ) − ln ( k 2 − 2 k + 4 ) ) expanding, ln S = k = 3 ∑ ∞ ( ln ( k − 2 ) − ln ( k + 2 ) ) − k = 3 ∑ ∞ ( ln ( k 2 − 2 k + 4 ) − ln ( k 2 + 2 k + 4 ) ) both are telescoping series,and solving them we get. ln S = ( ln ( 1 ) + ln ( 2 ) + ln ( 3 ) + ln ( 4 ) ) − ( ln ( 7 ) + ln ( 1 2 ) ) = ln ( 7 2 ) hence S = 7 2 , 2 + 7 = 9
Nice method. :)
r = 3 ∏ ∞ ( r 3 + 8 r 3 − 8 ) = r = 3 ∏ ∞ ( r + 2 ) ( r 2 − 2 r + 4 ) ( r − 2 ) ( r 2 + 2 r + 4 )
= ∏ r = 3 ∞ ( r + 2 ) ∏ r = 3 ∞ ( r 2 − 2 r + 4 ) ∏ r = 3 ∞ ( r − 2 ) ∏ r = 3 ∞ ( r 2 + 2 r + 4 )
= 7 ⋅ 1 2 ∏ r = 3 ∞ ( r + 2 ) ∏ r = 5 ∞ ( r 2 − 2 r + 4 ) 1 ⋅ 2 ⋅ 3 ⋅ 4 ∏ r = 7 ∞ ( r − 2 ) ∏ r = 3 ∞ ( r 2 + 2 r + 4 )
By changing the limits, we get
r = 3 ∏ ∞ ( r 3 + 8 r 3 − 8 ) = 7 ⋅ 1 2 ∏ r = 3 ∞ ( r + 2 ) ∏ r = 3 ∞ ( r 2 + 2 r + 4 ) 1 ⋅ 2 ⋅ 3 ⋅ 4 ∏ r = 3 ∞ ( r + 2 ) ∏ r = 3 ∞ ( r 2 + 2 r + 4 ) = 7 2
Lovely solution. Like it the most
Product of [(r - 2)/ (r + 2)][(r^2 + 2 x + 4)/ (r^2 - 2 x + 4)]
= (1)(2)(3)(4)/ [(7)(12)]
= 2/ 7
2 + 7 = 9
Problem Loading...
Note Loading...
Set Loading...
n → ∞ l im r = 3 ∏ n r 3 + 8 r 3 − 8
= n → ∞ l im ( 3 3 + 8 3 3 − 8 ) ( 4 3 + 8 4 3 − 8 ) . . . . . . . . ( n 3 + 8 n 3 − 8 )
= n → ∞ l im ( 3 + 2 3 − 2 . 3 2 + 4 − 2 ( 3 ) 3 2 + 4 + 2 ( 3 ) ) ( 4 + 2 4 − 2 . 4 2 + 4 − 2 ( 4 ) 4 2 + 4 + 2 ( 4 ) ) . . . . . . . . . ( n + 2 n − 2 . n 2 + 4 − 2 ( n ) n 2 + 4 + 2 ( n ) )
= n → ∞ l im { 3 + 2 3 − 2 . 4 + 2 4 − 2 . 5 + 2 5 − 2 . . . . . . . n + 2 n − 2 } { 3 2 + 4 − 2 ( 3 ) 3 2 + 4 + 2 ( 3 ) . 4 2 + 4 − 2 ( 4 ) 4 2 + 4 + 2 ( 4 ) . . . . . . . n 2 + 4 − 2 ( n ) n 2 + 4 + 2 ( n ) }
= n → ∞ l im { 5 . 6 . 7 . 8 . . . . 1 . 2 . 3 . 4 . 5 . 6 . . . . } { 7 . 1 2 . 1 9 . 2 8 . 3 9 . 4 2 . 6 3 . . . . . 1 9 . 2 8 . 3 9 . 5 2 . 6 3 . . . . . . . }
= n → ∞ l im ( n − 1 ) n ( n + 1 ) ( n + 2 ) ( n 2 + 5 ) ( n 2 + 2 n + 4 ) ( 1 . 2 . 3 . 4 ) ( 7 . 1 2 1 )
= 7 2