Producting Limits...

Calculus Level 4

Evaluate lim n r = 3 n r 3 8 r 3 + 8 \lim _{ n\rightarrow \infty } \prod _{ r=3 }^{ n }{ \frac { { r }^{ 3 }-8 }{ { r }^{ 3 }+8 } }

Here \prod { } represents product of function.

The answer is in the form a b \frac{a}{b} , express it in the form of a + b a+b .

To try more such problems click here .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

l i m n r = 3 n r 3 8 r 3 + 8 \underset { n\rightarrow \infty }{ lim } \prod _{ r=3 }^{ n }{ \frac { { r }^{ 3 }-8 }{ { r }^{ 3 }+8 } }

= l i m n ( 3 3 8 3 3 + 8 ) ( 4 3 8 4 3 + 8 ) . . . . . . . . ( n 3 8 n 3 + 8 ) =\quad \underset { n\rightarrow \infty }{ lim } \left( \frac { { 3 }^{ 3 }-8 }{ { 3 }^{ 3 }+8 } \right) \left( \frac { { 4 }^{ 3 }-8 }{ 4^{ 3 }+8 } \right) ........\left( \frac { { n }^{ 3 }-8 }{ n^{ 3 }+8 } \right)

= l i m n ( 3 2 3 + 2 . 3 2 + 4 + 2 ( 3 ) 3 2 + 4 2 ( 3 ) ) ( 4 2 4 + 2 . 4 2 + 4 + 2 ( 4 ) 4 2 + 4 2 ( 4 ) ) . . . . . . . . . ( n 2 n + 2 . n 2 + 4 + 2 ( n ) n 2 + 4 2 ( n ) ) =\quad \underset { n\rightarrow \infty }{ lim } \left( \frac { 3-2 }{ 3+2 } .\frac { { 3 }^{ 2 }+4+2(3) }{ { 3 }^{ 2 }+4-2(3) } \right) \left( \frac { 4-2 }{ 4+2 } .\frac { { 4 }^{ 2 }+4+2(4) }{ 4^{ 2 }+4-2(4) } \right) .........\left( \frac { n-2 }{ n+2 } .\frac { n^{ 2 }+4+2(n) }{ { n }^{ 2 }+4-2(n) } \right)

= l i m n { 3 2 3 + 2 . 4 2 4 + 2 . 5 2 5 + 2 . . . . . . . n 2 n + 2 } { 3 2 + 4 + 2 ( 3 ) 3 2 + 4 2 ( 3 ) . 4 2 + 4 + 2 ( 4 ) 4 2 + 4 2 ( 4 ) . . . . . . . n 2 + 4 + 2 ( n ) n 2 + 4 2 ( n ) } =\quad \underset { n\rightarrow \infty }{ lim } \left\{ \frac { 3-2 }{ 3+2 } .\frac { 4-2 }{ 4+2 } .\frac { 5-2 }{ 5+2 } .......\frac { n-2 }{ n+2 } \right\} \left\{ \frac { { 3 }^{ 2 }+4+2(3) }{ { 3 }^{ 2 }+4-2(3) } .\frac { { 4 }^{ 2 }+4+2(4) }{ 4^{ 2 }+4-2(4) } .......\frac { { n }^{ 2 }+4+2(n) }{ { n }^{ 2 }+4-2(n) } \right\}

= l i m n { 1.2.3.4.5.6.... 5.6.7.8.... } { 19.28.39.52.63....... 7.12.19.28.39.42.63..... } =\quad \underset { n\rightarrow \infty }{ lim } \left\{ \frac { 1.2.3.4.5.6.... }{ 5.6.7.8.... } \right\} \left\{ \frac { 19.28.39.52.63....... }{ 7.12.19.28.39.42.63..... } \right\}

= l i m n ( n 2 + 5 ) ( n 2 + 2 n + 4 ) ( 1.2.3.4 ) ( n 1 ) n ( n + 1 ) ( n + 2 ) ( 1 7.12 ) =\quad \underset { n\rightarrow \infty }{ lim } \frac { \left( { n }^{ 2 }+5 \right) \left( { n }^{ 2 }+2n+4 \right) \left( 1.2.3.4 \right) }{ \left( { n }-1 \right) n\left( { n }+1 \right) \left( { n }+2 \right) } \left( \frac { 1 }{ 7.12 } \right)

= 2 7 = \quad \boxed{\frac{2}{7}}

How did you get n 2 + 5 n^{2}+5 in the last step ?

Kudou Shinichi - 6 years, 4 months ago
Aareyan Manzoor
Feb 24, 2015

i'm going to use a simple telescoping sum to determine the answer. first off, S = k = 3 ( k 3 8 k 3 + 8 ) S=\prod_{k=3}^\infty (\dfrac{k^3-8}{k^3+8}) taking natural logarithm on both side ln ( S ) = k = 3 ( ln ( ( k 2 ) ( k 2 + 2 k + 4 ) ( k + 2 ) ( k 2 2 k + 4 ) ) ) \ln (S)=\sum_{k=3}^\infty (\ln(\dfrac{(k-2)(k^2+2k+4)}{(k+2)(k^2-2k+4)})) expanding by rules of logarithms, ln S = k = 3 ( ln ( k 2 ) ln ( k + 2 ) + ln ( k 2 + 2 k + 4 ) ln ( k 2 2 k + 4 ) ) \ln S=\sum_{k=3}^\infty (\ln(k-2)-\ln(k+2)+\ln(k^2+2k+4)-\ln(k^2-2k+4)) expanding, ln S = k = 3 ( ln ( k 2 ) ln ( k + 2 ) ) k = 3 ( ln ( k 2 2 k + 4 ) ln ( k 2 + 2 k + 4 ) ) \ln S =\sum_{k=3}^\infty (\ln(k-2)-\ln(k+2))-\sum_{k=3}^\infty (\ln(k^2-2k+4)-\ln(k^2+2k+4)) both are telescoping series,and solving them we get. ln S = ( ln ( 1 ) + ln ( 2 ) + ln ( 3 ) + ln ( 4 ) ) ( ln ( 7 ) + ln ( 12 ) ) = ln ( 2 7 ) \ln S= (\ln (1)+\ln (2)+\ln (3)+\ln (4))-(\ln (7)+\ln (12))=\ln(\dfrac{2}{7}) hence S = 2 7 , 2 + 7 = 9 S=\dfrac{2}{7}, 2+7=\boxed{9}

Nice method. :)

Keshav Tiwari - 6 years, 2 months ago
Wei Xian Lim
Feb 11, 2015

r = 3 ( r 3 8 r 3 + 8 ) = r = 3 ( r 2 ) ( r 2 + 2 r + 4 ) ( r + 2 ) ( r 2 2 r + 4 ) \prod_{r=3}^{\infty}\big(\frac{r^3-8}{r^3+8}\big)=\prod_{r=3}^{\infty}\frac{(r-2)(r^2+2r+4)}{(r+2)(r^2-2r+4)}

= r = 3 ( r 2 ) r = 3 ( r 2 + 2 r + 4 ) r = 3 ( r + 2 ) r = 3 ( r 2 2 r + 4 ) =\frac{\prod_{r=3}^{\infty}(r-2)\prod_{r=3}^{\infty}(r^2+2r+4)}{\prod_{r=3}^{\infty}(r+2)\prod_{r=3}^{\infty}(r^2-2r+4)}

= 1 2 3 4 r = 7 ( r 2 ) r = 3 ( r 2 + 2 r + 4 ) 7 12 r = 3 ( r + 2 ) r = 5 ( r 2 2 r + 4 ) =\frac{1\cdot 2\cdot 3\cdot 4 \prod_{r=7}^{\infty}(r-2)\prod_{r=3}^{\infty}(r^2+2r+4)} {7 \cdot 12 \prod_{r=3}^{\infty}(r+2)\prod_{r=5}^{\infty}(r^2-2r+4)}

By changing the limits, we get

r = 3 ( r 3 8 r 3 + 8 ) = 1 2 3 4 r = 3 ( r + 2 ) r = 3 ( r 2 + 2 r + 4 ) 7 12 r = 3 ( r + 2 ) r = 3 ( r 2 + 2 r + 4 ) = 2 7 \prod_{r=3}^{\infty}\big(\frac{r^3-8}{r^3+8}\big)=\frac{1\cdot 2\cdot 3\cdot 4 \prod_{r=3}^{\infty}(r+2)\prod_{r=3}^{\infty}(r^2+2r+4)} {7 \cdot 12 \prod_{r=3}^{\infty}(r+2)\prod_{r=3}^{\infty}(r^2+2r+4)}=\large\boxed{\frac{2}{7}}

Lovely solution. Like it the most

Prithwish Mukherjee - 2 years ago
Lu Chee Ket
Feb 10, 2015

Product of [(r - 2)/ (r + 2)][(r^2 + 2 x + 4)/ (r^2 - 2 x + 4)]

= (1)(2)(3)(4)/ [(7)(12)]

= 2/ 7

2 + 7 = 9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...