Progressions

Calculus Level 3

S n = r = 1 n 2 r + 1 r 4 + 2 r 3 + r 2 S_{n}=\sum_{r=1}^n\frac{2r+1}{r^{4}+2r^{3}+r^{2}}

For S n S_n as defined above, S 20 = m m + 1 S_{20} = \dfrac{m}{m+1} . Find m + 1 \sqrt{m+1} .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Omkar Kulkarni
Jun 2, 2015

Here's a Latex solution, for those who find the other one incomprehensible.

2 r + 1 r 4 + 2 r 3 + r 2 = 2 r + 1 r 2 ( r 2 + 2 r + 1 ) = 2 r + 1 r 2 ( r + 1 ) 2 = r 2 + 2 r + 1 r 2 r 2 ( r + 1 ) 2 = ( r + 1 ) 2 r 2 r 2 ( r + 1 ) 2 = ( r + 1 ) 2 r 2 ( r + 1 ) 2 r 2 r 2 ( r + 1 ) 2 = 1 r 2 1 ( r + 1 ) 2 \begin{aligned} \frac{2r+1}{r^{4}+2r^{3}+r^{2}} &=& \frac{2r+1}{r^{2}(r^{2}+2r+1)} \\ &=&\frac{2r+1}{r^{2}(r+1)^{2}} \\ &=& \frac{r^{2}+2r+1-r^{2}}{r^{2}(r+1)^{2}} \\ &=& \frac{(r+1)^{2}-r^{2}}{r^{2}(r+1)^{2}} \\ &=& \frac{(r+1)^{2}}{r^{2}(r+1)^{2}}-\frac{r^{2}}{r^{2}(r+1)^{2}} \\ &=& \frac{1}{r^{2}}-\frac{1}{(r+1)^{2}} \end{aligned}

r = 1 n 2 r + 1 r 4 + 2 r 3 + r 2 = r = 1 n 1 r 2 1 ( r + 1 ) 2 = 1 1 2 1 2 2 + 1 2 2 1 3 2 + 1 3 2 + 1 4 2 + + 1 n 2 1 ( n + 1 ) 2 = 1 1 ( n + 1 ) 2 = n ( n + 2 ) ( n + 1 ) 2 \begin{aligned} \therefore \displaystyle \sum_{r=1}^{n} \frac{2r+1}{r^{4}+2r^{3}+r^{2}} &=& \displaystyle \sum_{r=1}^{n} \frac{1}{r^{2}}-\frac{1}{(r+1)^{2}} \\ &=& \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\dots+\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}} \\ &=& 1-\frac{1}{(n+1)^{2}} = \frac{n(n+2)}{(n+1)^{2}} \end{aligned}

S 20 = ( 20 ) ( 22 ) 21 × 21 = 440 441 \therefore S_{20}=\frac{(20)(22)}{21\times21}=\boxed{\frac{440}{441}}

S n = r = 1 n 2 r + 1 r 4 + 2 r 3 + r 2 = r = 1 n 2 r + 1 r 2 ( r 2 + 2 r + 1 ) = r = 1 n 2 r + 1 r 2 ( r + 1 ) 2 = r = 1 n ( 1 r 2 1 ( r + 1 ) 2 ) = 1 1 ( n + 1 ) 2 S 20 = 1 1 2 1 2 = 440 441 \begin{aligned} S_n & = \sum_{r=1}^n \frac {2r+1}{r^4+2r^3+r^2} \\ & = \sum_{r=1}^n \frac {2r+1}{r^2(r^2+2r+1)} \\ & = \sum_{r=1}^n \frac {2r+1}{r^2(r+1)^2} \\ & = \sum_{r=1}^n \left(\frac 1{r^2} - \frac 1{(r+1)^2} \right) \\ & = 1 - \frac 1{(n+1)^2} \\ \implies S_{20} & = 1 - \frac 1{21^2} = \frac {440}{441} \end{aligned}

m + 1 = 441 = 21 \implies \sqrt{m+1} = \sqrt{441} = \boxed{21}

Siddharth Iyer
Apr 21, 2015

We can factor the denominator as (r^2)((r+1)^2). Write numberator as (r+1)^2-r^2 to obtain ((r+1)^2-r^2)/((r^2)((r+1)^2) = (1/(r^2))-(1/(r+1)^2). Observe that 1/((1)^2) -1/((2)^2)+(1/((2)^2)+(1/(3)^2)...(1/(20)^2)-(1/(21^2)) = 1 - 1/(21)^2 =399/400. root(400)=20

You made a slight mistake in the second last step. 1 1 2 1 2 1-\frac{1}{21^{2}} should be equal to 440 441 \frac{440}{441} , not 399 400 \frac{399}{400} .

Omkar Kulkarni - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...