Progressocomplexocalcullotite Freaky Challenge.

Calculus Level 5

a , b are coprime and c, d are coprime and ln (e)=1 2 1 ! + 4 2 ! + 6 4 ! + 8 6 ! + . . . . . + = a e b + c d e \frac{2}{1!}+\frac{4}{2!}+\frac{6}{4!}+\frac{8}{6!}+.....+\infty=\frac{ae}{b}+\frac{c}{de}

Find the value of a b 3 d c 3 ab^{3}dc^{3}


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Milun Moghe
Jan 9, 2014

s i n ( x ) + x c o s ( x ) = 2 x x 3 ( 1 2 ! + 1 3 ! ) + x 5 ( 1 4 ! + 1 5 ! ) x 7 ( 1 6 ! + 1 7 ! ) + . . . . . . . . . sin(x)+xcos(x)=2x-x^{3}(\frac{1}{2!}+\frac{1}{3!})+x^{5}(\frac{1}{4!}+\frac{1}{5!})-x^{7}(\frac{1}{6!}+\frac{1}{7!})+......... 2 c o s ( x ) x s i n ( x ) = 2 3 x 2 ( 1 2 ! + 1 3 ! ) + 5 x 4 ( 1 4 ! + 1 5 ! ) . . . . . . . . 2cos(x)-xsin(x)=2-3x^{2}(\frac{1}{2!}+\frac{1}{3!})+5x^{4}(\frac{1}{4!}+\frac{1}{5!})-........ 2 c o s ( i ) i s i n ( i ) = 2 3 i 2 ( 1 2 ! + 1 3 ! ) + 5 i 4 ( 1 4 ! + 1 5 ! ) . . . . . . . . 2cos(i)-isin(i)=2-3i^{2}(\frac{1}{2!}+\frac{1}{3!})+5i^{4}(\frac{1}{4!}+\frac{1}{5!})-........ using hyperbolic functions or formulae of sin and cos 1 2 e + 3 e 2 \frac{1}{2e}+\frac{3e}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...