Projectile for PROs

F i n d t h e v a l u e o f θ f o r w h i c h t h e a r e a b / w t r a j e c t a r y ( p a t h o f p r o j e c t i l e ) a n d t h e g r o u n d i s m a x i m u m . E q a t i o n s a r e g i v e n : T i m e o f f l i g h t = 2 u sin θ / g M a x i m u m H e i g h t = u 2 ( sin θ ) 2 / 2 g R a n g e = 2 u 2 sin θ c o s θ / g E q a t i o n o f t r a j e c t o r y : y = x tan θ g x 2 2 u 2 ( c o s θ ) 2 a n s w e r i n d e g r e e s . Find\quad the\quad value\quad of\quad \theta \quad for\quad which\quad \quad the\quad area\quad b/w\quad \\ trajectary(\quad path\quad of\quad projectile)\quad and\quad the\quad ground\quad is\quad maximum\quad .\\ Eqations\quad are\quad given-:\\ Time\quad of\quad flight\quad =\quad 2u\sin { \theta } /g\\ Maximum\quad Height\quad =\quad { u }^{ 2 }{ (\sin { \theta } ) }^{ 2 }/2g\\ Range\quad =\quad 2{ u }^{ 2 }\sin { \theta } cos{ \theta }/g\\ Eqation\quad of\quad trajectory:\quad y\quad =\quad x\tan { \theta } -\frac { g{ x }^{ 2 } }{ 2{ u }^{ 2 }{ (cos{ \theta }) }^{ 2 } } \\ answer\quad in\quad degrees.\quad


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The area under any arbitrary projectile is given by 2 3 ( M a x . H e i g h t ) ( M a x . h o r i z o n t a l d i s t a n c e ) \frac { 2 }{ 3 } (Max.\quad Height)(Max.\quad horizontal\quad distance) . Here, the maximum height is given by u 2 s i n 2 θ 2 g \frac { { u }^{ 2 }sin^{ 2 }{ \theta } }{ 2g } and the maximum horizontal distance i.e. the range, is given by u 2 s i n 2 θ g \frac { { u }^{ 2 }sin{ 2\theta } }{ g } .

Putting in the given values, the area comes out to be:

2 3 ( u 2 s i n 2 θ 2 g ) ( u 2 s i n 2 θ g ) u 4 s i n 2 θ s i n 2 θ 3 g 2 u 4 s i n 3 θ cos θ 3 g 2 \quad \quad \quad \frac { 2 }{ 3 } (\frac { { u }^{ 2 }sin^{ 2 }{ \theta } }{ 2g } )(\frac { { u }^{ 2 }sin{ 2\theta } }{ g } )\\ \\ \Rightarrow \frac { { u }^{ 4 }sin^{ 2 }{ \theta }sin{ 2\theta } }{ 3{ g }^{ 2 } } \\ \\ \Rightarrow \frac { { u }^{ 4 }sin^{ 3 }{ \theta \cos { \theta } } }{ 3{ g }^{ 2 } }

Now, for area to be maximum, the derivative of area, must be equal to 0 0 . So,

d A d θ = 0 d d θ u 4 s i n 3 θ cos θ 3 g 2 = 0 u 4 3 g 2 d d θ s i n 3 θ cos θ = 0 cos θ d d θ s i n 3 θ + s i n 3 θ d d θ cos θ = 0 cos θ ( 3 s i n 2 θ ) ( d d θ s i n θ ) + s i n 3 θ ( s i n θ ) = 0 3 s i n 2 θ c o s 2 θ s i n 4 θ = 0 s i n 2 θ ( 3 c o s 2 θ s i n 2 θ ) = 0 \quad \quad \frac { dA }{ d\theta } \quad =\quad 0\\ \\ \Rightarrow \frac { d }{ d\theta } \frac { { u }^{ 4 }sin^{ 3 }{ \theta \cos { \theta } } }{ 3{ g }^{ 2 } } \quad =\quad 0\\ \\ \Rightarrow \frac { { u }^{ 4 } }{ 3{ g }^{ 2 } } \frac { d }{ d\theta } sin^{ 3 }{ \theta }\cos { \theta } =\quad 0\\ \\ \Rightarrow \cos { \theta } \frac { d }{ d\theta } sin^{ 3 }{ \theta }\quad +\quad sin^{ 3 }{ \theta }\frac { d }{ d\theta } \cos { \theta } \quad =\quad 0\\ \\ \Rightarrow \cos { \theta } (3sin^{ 2 }{ \theta })(\frac { d }{ d\theta } sin{ \theta })+sin^{ 3 }{ \theta }(-sin{ \theta })\quad =\quad 0\\ \\ \Rightarrow 3sin^{ 2 }{ \theta }cos^{ 2 }{ \theta }\quad -\quad sin^{ 4 }{ \theta }\quad =\quad 0\\ \Rightarrow sin^{ 2 }{ \theta }\quad (3cos^{ 2 }{ \theta }-sin^{ 2 }{ \theta })\quad =\quad 0

Now, either s i n θ = 0 sin{ \theta }\quad =\quad 0 , which won't really form a projectile. Or, 3 c o s 2 θ s i n 2 θ = 0 tan 2 θ = 3 tan θ = ± 3 3cos^{ 2 }{ \theta }-sin^{ 2 }{ \theta }\quad =\quad 0\\ \tan ^{ 2 }{ \theta } \quad =\quad 3\\ \tan { \theta } \quad =\quad \pm \sqrt { 3 }

But since, θ < 90 ° \theta <90°

So, tan θ > 0 tan θ = 3 θ = 60 ° \tan { \theta } >0\\ \tan { \theta } \quad =\quad \sqrt { 3 } \\ \theta \quad =\quad 60°

CHEERS!:)

Ayon Ghosh
Jul 6, 2017

I solved this question a few days back today i got some time so wrote the solution.

Integrate the area within the trajectory.

that will be [ integral f(x) - g(x) dx ] where f(x) is the equation for the trajectory and g(x) is 0 (since on x axis y = 0).I leave the integration to you. Limits are 0 and formula for range.Once done we have got the area as a function of theta (the angle).

now differentiate that w.r.t to theta and set it to zero.

and in the end we get tan theta = sqrt 3. giving theta = pi /3 radians = 60 degrees.

of course we could check whether theta is global maxima or minima by applying second derivative test. (i did n't do it but it suddenly came to my mind.)

then differentiating it again we get an expression in theta but setting theta = 60 we can check whether it is positive or negative if negative theta is global maxima.

really interesting problem integration followed by differentiation.

why not ask the area instead of just angle ?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...