Projectile motion

A ball is projected from ground with speed of 20 m/s 20\text{ m/s} at angle of 4 5 45^{\circ} with the horizontal. There is a wall 25 m 25\text{ m} in height at a horizontal distance of 10 m 10\text{ m} from the projection point. At what height in meters will the ball hit the wall? (Use g = 10 m/s 2 g = 10\text{ m/s}^2 .)

5 10 7.5 12.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 13, 2017

The vertical displacement y y of the projectile at time t t is given by:

y = u y t 1 2 g t 2 where u y is the vertical component of initial velocity. = 20 sin 4 5 t 1 2 ( 10 ) t 2 y = 10 2 t 5 t 2 ( 1 ) \begin{aligned} y & = u_y t- \frac 12 gt^2 \quad \quad \small \color{#3D99F6} \text{where }u_y \text{ is the vertical component of initial velocity.} \\ & = 20\sin 45^\circ t- \frac 12 (10)t^2 \\ \implies y & = 10\sqrt 2t- 5t^2 \quad …(1) \end{aligned}

The horizontal displacement x x :

x = u x t = 20 cos 4 5 = 10 2 t t = x 10 2 ( 2 ) \begin{aligned} x & = u_x t \\ &= 20\cos 45^\circ \\ &= 10\sqrt 2t \\ \implies t &= \frac x {10\sqrt 2} \quad …(2) \end{aligned}

Substituting (2) in (1):

y = 10 2 t 5 t 2 = x x 2 40 Putting x = 10 = 10 1 0 2 40 = 7.5 \begin{aligned} \implies y & = 10\sqrt 2t- 5t^2 \\ &= x -\frac {x^2}{40} &\small \color{#3D99F6} \text{Putting }x=10 \\ &=10-\frac {10^2}{40} \\ &= \boxed{7.5} \end{aligned}

Zach Abueg
Jun 12, 2017

First analyze the projectile horizontally: find the time t t when the ball hits the wall 10 m 10 \ m away.

d x = v x t 10 = 20 cos 4 5 t t = 1 2 \displaystyle \begin{aligned} d_x & = v_xt \\ 10 & = 20\cos45^{\circ}t \\ t & = \frac{1}{\sqrt{2}} \end{aligned}

Now analyze the projectile vertically: find the vertical distance d y d_y where the ball hits the wall at time t = 1 2 \displaystyle t = \frac{1}{\sqrt{2}} .

d y = v i t + 1 2 a t 2 = 20 sin 4 5 ( 1 2 ) + 1 2 ( 10 ) ( 1 2 ) 2 = 10 5 2 = 7.5 m \displaystyle \begin{aligned} d_y & = v_it + \frac12at^2 \\ & = 20\sin45^{\circ}\left(\frac{1}{\sqrt{2}}\right) + \frac12(- 10)\left(\frac{1}{\sqrt{2}}\right)^2 \\ & = 10 - \frac52 \\ & = \boxed{7.5 \ m} \end{aligned}

Maximos Stratis
Jun 12, 2017

The trajectory of the ball is given by the equation:
y = tan θ x g 2 v 2 ( cos θ ) 2 x 2 y=\tan{\theta}\cdot x - \frac{g}{2v^{2}\cdot (\cos{\theta})^{2}}\cdot x^{2}
where θ \theta is the angle that we throw the ball, g g the acceleration of gravity, v v the speed at which we throw the ball, y y the height and x x the horizontal distance.
If we substitute:
θ = 4 5 \theta=45^{\circ} , x = 10 m x=10m , g = 10 m s 2 g=10\frac{m}{s^{2}} , v = 20 m s v=20\frac{m}{s} we find that:
y = 7.5 m y=7.5m
Therefore the ball will hit the wall at a height of 7.5 meters



Proof of the trajectory equation
The initial speed on the x axis is : v x = v cos θ v_{x}=v\cdot \cos{\theta}
So: x = v x t x = v cos θ t t = x v cos θ x=v_{x}\cdot t\Rightarrow x=v\cdot \cos{\theta}\cdot t\Rightarrow t=\frac{x}{v\cdot \cos{\theta}}
The inital speed on the y axis is: v y = v sin θ v_{y}=v\cdot \sin{\theta}
So: y = v y t 1 2 g t 2 y=v_{y}\cdot t - \frac{1}{2}\cdot g \cdot t^{2}\Rightarrow
y = v sin θ x v cos θ 1 2 g ( x v cos θ ) 2 y=v\cdot \sin{\theta}\cdot \frac{x}{v\cdot \cos{\theta}} - \frac{1}{2}\cdot g \cdot (\frac{x}{v\cdot \cos{\theta}})^{2}\Rightarrow
y = tan θ x g 2 v 2 ( cos θ ) 2 x 2 y=\tan{\theta}\cdot x - \frac{g}{2\cdot v^{2}\cdot (\cos{\theta})^{2}}\cdot x^{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...