Projection on a Plane

Geometry Level 5

Suppose, a ^ , b ^ \hat{a}, \hat{b} and c ^ \hat{c} are three non-coplanar unit vectors. Let θ a b , θ a c \theta_{ab}, \theta_{ac} and θ b c \theta_{bc} be the angles between a ^ \hat{a} & b ^ \hat{b} , a ^ \hat{a} & c ^ \hat{c} and b ^ \hat{b} & c ^ \hat{c} respectively. Let P P be a plane on which b ^ \hat{b} and c ^ \hat{c} lie. The projection vector of a ^ \hat{a} on the plane P P is, A p = B b ^ + C c ^ \vec{A_p}=B\hat{b}+C\hat{c} Given that, cos θ a b = 1 5 , c o s θ a c = 1 6 \cos {\theta_{ab}} = \frac{1}{5}, cos{\theta_{ac}}= \frac{1}{6} and cos θ b c = 1 2 \cos{\theta_{bc}}=\frac{1}{2} .

B C B-C can be expressed as m n \frac{m}{n} , where m m and n n are coprime positive integers. Calculate the value of m + n m+n .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arpon Paul
Feb 14, 2016

Let, a ^ = B b ^ + C c ^ + N n ^ . . . . . . . . . ( i ) \hat{a}=B\hat{b}+C\hat{c}+N\hat{n}~...~...~...(i) , where, n ^ \hat{n} is the unit normal vector on the plane P P . Now, a ^ b ^ = B b ^ b ^ + C c ^ b ^ + N n ^ b ^ \hat{a} \cdot \hat{b} =B \hat{b} \cdot \hat{b} + C \hat{c} \cdot \hat{b} +N \hat{n} \cdot \hat{b} cos θ a b = B + C cos θ b c . . . . . . . . . ( i i ) \rightarrow \cos{\theta_{ab}}=B+C \cos{\theta_{bc}}~...~ ... ~...(ii) Again, taking the dot product of c ^ \hat{c} and eqn. (i), cos θ a c = C + B cos θ b c . . . . . . . . . ( i i i ) \cos{\theta_{ac}}=C+B \cos{\theta_{bc}}~...~ ...~ ...(iii) Now, solving eqn. (ii) & (iii), B = cos θ a b cos θ a c cos θ b c 1 cos 2 θ b c B=\frac{\cos{\theta_{ab}}-\cos{\theta_{ac}} \cos{\theta_{bc}}}{1-\cos^2{\theta_{bc}}} C = cos θ a c cos θ a b cos θ b c 1 cos 2 θ b c C=\frac{\cos{\theta_{ac}}-\cos{\theta_{ab}} \cos{\theta_{bc}}}{1-\cos^2{\theta_{bc}}} Plugging in the values of cos θ a b , cos θ a c \cos{\theta_{ab}}, \cos{\theta_{ac}} & cos θ b c \cos{\theta_{bc}} , we get, B = 7 45 ; C = 4 45 B=\frac{7}{45} ;~~ C=\frac{4}{45} So, B C = 1 15 B-C=\frac{1}{15} ,i.e, the answer is 16 16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...