Proof Problem - 6

Algebra Level 3

If q 1 q \neq 1 and n n is a positive integer,

a + a q + a q 2 + a q 3 + + a q n = a 1 q n + 1 1 q \large a + aq + {aq}^2 + {aq}^3 + \dots + {aq}^n = a \frac {1-q^{n+1}}{1-q}

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ananth Jayadev
Jan 21, 2016

First, let us see if this is true for n = 1 n = 1 ,

a ( 1 q 1 + 1 ) 1 q = a ( 1 q 2 ) 1 q = a ( 1 + q ) ( 1 q ) 1 q = a ( 1 + q ) \frac {a(1 - q^{1 + 1})}{1 - q} = \frac {a(1 - q^2)}{1 - q} = \frac {a(1 + q)(1 - q)}{1 - q} = a(1 + q) ,

a + a q = a ( 1 + q ) a + aq = a(1 + q) , thus this is true for n = 1 n = 1 ,

Now, let us assume this is true for n = r n = r so that

a + a q + a q 2 + a q 3 + + a q r = a 1 q r + 1 1 q a + aq + {aq}^2 + {aq}^3 + \dots + {aq}^r = a \frac {1 - q^{r + 1}}{1 - q} ,

Then, a + a q + a q 2 + a q 3 + + a q r + a q r + 1 = a 1 q r + 1 1 q + a q r + 1 a + aq + {aq}^2 + {aq}^3 + \dots + {aq}^r + {aq}^{r + 1} = a \frac {1 - q^{r + 1}}{1 - q} + {aq}^{r + 1} ,

That equals a ( 1 q r + 1 ) + q r + 1 ( 1 q ) 1 q = a 1 q r + 1 + q r + 1 q r + 2 1 q a \frac {(1 - q^{r + 1}) + q^{r + 1}(1 - q)}{1 - q} = a \frac {1 - q^{r + 1} + q^{r + 1} - q^{r + 2}}{1 - q} ,

Which equals a 1 q r + 2 1 q = a 1 q ( r + 1 ) + 1 ) 1 q a \frac {1 - q^{r + 2}}{1 - q} = a \frac {1 - q^{(r + 1) + 1)}}{1 - q}

If this is true for r r and r + 1 r + 1 , it must be true for all positive integers. Q.E.D.

Kay Xspre
Jan 21, 2016

It can be easily proven that ( 1 q ) ( 1 + q + q 2 + q 3 + + q n ) = 1 q n + 1 (1-q)(1+q+q^2+q^3+\dots+q^n) = 1-q^{n+1} by expanding them, which gives m = 0 n q m m = 0 n q m + 1 = 1 q n + 1 \sum_{m=0}^n q^m-\sum_{m=0}^n q^{m+1} = 1-q^{n+1} Hence a ( 1 + q + q 2 + q 3 + + q n ) = a ( 1 q n + 1 1 q ) a(1+q+q^2+q^3+\dots+q^n) = a(\frac{1-q^{n+1}}{1-q})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...