Proofathon Problem 1

Determine the remainder when 600 0 599 9 1 6000^{5999^{\dots^{1}}} is divided by 2013 2013 .


The answer is 1974.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Muhammad Ihsan
May 11, 2015

6000 5999 . . . 1 m o d 3 = 0 . 6000 5999 5998 5997 . . . 1 m o d 2 m o d 4 m o d 10 m o d 11 = 5 . 6000 5999 5998 5997 . . . 1 m o d 8 m o d 16 m o d 60 m o d 61 = 11 . x = 0 m o d 3 x = 5 m o d 11 x = 11 m o d 61 . x = 1974 m o d 2013 { 6000 }^{ { 5999 }^{ ...1 } }\quad mod\quad 3\quad =\quad 0\\ .\\ { 6000 }^{ { 5999 }^{ { 5998 }^{ { 5997 }^{ ...1 }\quad mod\quad 2 }\quad mod\quad 4 }\quad mod\quad 10 }\quad mod\quad 11\quad =\quad 5\\ .\\ { 6000 }^{ { 5999 }^{ { 5998 }^{ { 5997 }^{ ...1 }\quad mod\quad 8 }\quad mod\quad 16 }\quad mod\quad 60 }\quad mod\quad 61\quad =\quad 11\\ .\\ x\quad =\quad 0\quad mod\quad 3\\ x\quad =\quad 5\quad mod\quad 11\\ x\quad =\quad 11\quad mod\quad 61\\ .\\ x\quad =\quad \boxed { 1974 } \quad mod\quad 2013

Why is the third modulus mod 13 instead of mod 61? The number 2013 is 3 * 11 * 61.

John Barczynski - 6 years ago

Log in to reply

thanks for your correction

Muhammad Ihsan - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...