Propose by Jan Šustek

Calculus Level 4

lim α 1 α 1 α α 1 x d x = ? \large \mathop {\lim}\limits_{\alpha\to\infty}\dfrac{1}{\alpha}\int\limits_1^{\alpha} \alpha^{\frac{1}{x}} \, dx= \ ?

Give your answer to 3 decimal places.


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Xero Xiar
Aug 10, 2015

Dominick Hing
Aug 8, 2015

We can use L'Hopital's rule to evaluate this:

lim a 1 a 1 a a 1 x d x = lim a d d a 1 a a 1 x d x = lim a d d a [ F ( a ) F ( 1 ) ] { \lim }_{ a\to \infty }\frac { 1 }{ a } \int _{ 1 }^{ a } a^{ \frac { 1 }{ x } }\, dx\quad =\quad \lim _{ a\rightarrow \infty }{ \frac { d }{ da } \int _{ 1 }^{ a } a^{ \frac { 1 }{ x } }\, dx } \quad =\quad \lim _{ a\rightarrow \infty }{ \frac { d }{ da } \left[ F(a)-F(1) \right] }

where F ( x ) F(x) is the antiderivative of a 1 x a^{ \frac { 1 }{ x } }

lim a d d a [ F ( a ) F ( 1 ) ] = lim a F ( a ) = lim a a 1 a \lim _{ a\rightarrow \infty }{ \frac { d }{ da } \left[ F(a)-F(1) \right] } =\quad \lim _{ a\rightarrow \infty }{ F'(a) } =\quad \lim _{ a\rightarrow \infty }{ { a }^{ \frac { 1 }{ a } } }

because F ( x ) F'(x) is a 1 x { a }^{ \frac { 1 }{ x } } and thus F ( a ) F'(a) is a 1 a { a }^{ \frac { 1 }{ a } } .

This last limit can be evaluated by using exponents, and then again with L'hopital's rule:

lim a a 1 a = e lim a 1 a ln a = e lim a ln a a = e lim a 1 a = e 0 = 1 \lim _{ a\rightarrow \infty }{ { a }^{ \frac { 1 }{ a } } } =\quad { e }^{ \lim _{ a\rightarrow \infty }{ \frac { 1 }{ a } \ln { a } } }=\quad { e }^{ \lim _{ a\rightarrow \infty }{ \frac { \ln { a } }{ a } } }\quad =\quad { e }^{ \lim _{ a\rightarrow \infty }{ \frac { 1 }{ a } } }=\quad { e }^{ 0 }\quad =\quad 1

There is a mistake in the calculation of F'(a) i post my solution.

Xero Xiar - 5 years, 10 months ago

Therefore, the answer is 1.000 1.000 , if the problem said to give the answer to 3 3 decimal places

Adam Phúc Nguyễn - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...