Calculate

Algebra Level 2

If a + b + c = 0 a+b+c=0 , then which of the following is equal to a 3 + b 3 + c 3 a^3+b^3+c^3 .

3abc 9abc 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Augusto Santos
Jan 29, 2016

Edwin Gray
Jan 11, 2019

a = -(b + c), a^3 = -(b + c)^3 = -b^3 - 3bc(b + c) - c^3, a^3 + b^3 + c^3 = -3bc*(-a) = 3abc. Ed Gray

a 3 + b 3 + c 3 = x \Rightarrow a^3+b^3+c^3=\color{#D61F06}{x}

Adding ( 3 a b c ) (-3abc) both sides.

a 3 + b 3 + c 3 3 a b c = x 3 a b c \Rightarrow a^3+b^3+c^3-3abc=\color{#D61F06}{x}-3abc
( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) = x 3 a b c \Rightarrow \color{#3D99F6}{(a+b+c)}(a^2+b^2+c^2-ab-bc-ca)=\color{#D61F06}{x}-3abc
0 = x 3 a b c \Rightarrow \color{#3D99F6}{0}=\color{#D61F06}{x}-3abc
a 3 + b 3 + c 3 = 3 a b c \Rightarrow \boxed{a^3+b^3+c^3=3abc}


Sravanth C.
Jan 29, 2016

We know that: a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c a c ) a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

So, when ( a + b + c ) = 0 (a+b+c)=0 ;

a 3 + b 3 + c 3 3 a b c = ( 0 ) ( a 2 + b 2 + c 2 a b b c a c ) a 3 + b 3 + c 3 3 a b c = 0 a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3-3abc=(0)(a^2+b^2+c^2-ab-bc-ac)\\a^3+b^3+c^3-3abc=0\\\therefore\boxed{a^3+b^3+c^3=3abc}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...