Prove it

Geometry Level pending

Which of the following is equal to

tan θ + tan ϕ cot θ + cot ϕ \large\dfrac{\tan \theta + \tan \phi}{\cot \theta + \cot \phi}

tan θ + tan ϕ \tan \theta+\tan \phi cot θ cot ϕ \cot \theta~\cot \phi tan θ tan ϕ \tan \theta~\tan \phi tan θ + cot ϕ \tan \theta+\cot \phi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

tan θ + tan ϕ cot θ + cot ϕ \large\dfrac{\tan \theta + \tan \phi}{\cot \theta + \cot \phi}

= tan θ + tan ϕ 1 tan θ + 1 tan ϕ \large= \dfrac{\tan \theta + \tan \phi}{\frac{1}{\tan \theta}+\frac{1}{\tan \phi}}

= tan θ + tan ϕ tan ϕ + tan θ tan θ tan ϕ \large= \dfrac{\tan \theta + \tan \phi}{\dfrac{\tan \phi + \tan \theta}{\tan \theta~\tan \phi}}

= tan θ + tan ϕ 1 × tan θ tan ϕ tan θ + tan ϕ \large=\dfrac{\tan \theta + \tan \phi}{1} \times \dfrac{\tan \theta~\tan \phi}{\tan \theta + \tan \phi}

= \large = tan θ tan ϕ \boxed{\large \tan \theta~\tan \phi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...