Psi Integral! (12)

Calculus Level 4

A = 0 π / 2 ψ ( x ) ψ ( x ) + ψ ( π 2 x ) d x \large A = \displaystyle \int_0^{{\pi} / {2}} \frac{\psi (x)}{\psi (x) + \psi \left(\frac{\pi}{2} - x \right)} \, dx

  • Compute A × 1000 \lfloor A \times 1000 \rfloor .

  • For your final step of your calculation, use the approximation π = 22 7 \pi = \dfrac{22}7 .

Notations :


The answer is 785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let I = 0 π 2 ψ ( x ) ψ ( x ) + ψ ( π 2 x ) d x [ 0 a f ( x ) d x = 0 a f ( x a ) d x ] I = 0 π 2 ψ ( π 2 x ) ψ ( π 2 x ) + ψ ( π 2 π 2 + x ) d x By adding the above two equations 2 I = 0 π 2 ψ ( π 2 x ) + ψ ( x ) ψ ( π 2 x ) + ψ ( x ) d x 2 I = 0 π 2 d x 2 I = [ x ] 0 π 2 2 I = π 2 0 I = π 4 0.785714 A = 0.785714 1000 × A = 0.785714 × 1000 = 785.714 = 785 \large \displaystyle \text{Let } I = \int_0^{\frac{\pi}{2}} \frac{\psi (x)}{\psi (x) + \psi \left(\frac{\pi}{2} - x \right)} \, dx\\ \large \displaystyle \left[\because \int_0^a f(x) \, dx = \int_0^a f(x-a) \, dx \right]\\ \large \displaystyle \therefore I = \int_0^{\frac{\pi}{2}} \frac{\psi \left(\frac{\pi}{2} - x \right)}{\psi \left(\frac{\pi}{2} - x \right) + \psi \left(\frac{\pi}{2} - \frac{\pi}{2} + x \right)} \, dx\\ \large \displaystyle \color{#69047E}{\text{By adding the above two equations}}\\ \large \displaystyle \implies 2I = \int_0^{\frac{\pi}{2}} \frac{\psi \left(\frac{\pi}{2} - x \right) + \psi(x)}{\psi \left(\frac{\pi}{2} - x \right) + \psi (x)} \, dx\\ \large \displaystyle \implies 2I= \int_0^{\frac{\pi}{2}} \, dx\\ \large \displaystyle \implies 2I = \left[x \right]_0^{\frac{\pi}{2}}\\ \large \displaystyle \implies 2I = \frac{\pi}{2} - 0\\ \large \displaystyle \implies I = \frac{\pi}{4} \approx \color{#3D99F6}{\boxed{0.785714}}\\ \large \displaystyle \implies A = \color{#20A900}{0.785714}\\ \large \displaystyle \implies \lfloor 1000 \times A \rfloor = \lfloor 0.785714 \times 1000 \rfloor = \lfloor 785.714 \rfloor = \color{#D61F06}{\boxed{785}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...