*Pukes Mathematically II

Calculus Level 4

I = 0 e 1 ln ( x ) d x \large I = \int_{0}^{e} \sqrt{1-\ln(x)} \ dx

If the above integral can be expressed in the form A e B π C Ae^{B}\pi^{C} for rational numbers A A , B B , and C C , find A + B + C A+B+C .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Sep 19, 2017

I = 0 e 1 ln ( x ) d x I=\int _{ 0 }^{ e }{ \sqrt { 1-\ln { \left( x \right) } } dx }

l e t u = 1 ln ( x ) x = e ( 1 u ) d x = e ( 1 u ) d u let\quad u=1-\ln { \left( x \right) } \Rightarrow x={ e }^{ \left( 1-u \right) }\Rightarrow dx=-{ e }^{ \left( 1-u \right) }du

I = 0 u 1 2 e ( 1 u ) d u = e 0 u 1 2 e u d u I=\int _{ 0 }^{ \infty }{ { u }^{ \frac { 1 }{ 2 } }{ e }^{ \left( 1-u \right) }du } =e\int _{ 0 }^{ \infty }{ { u }^{ \frac { 1 }{ 2 } }{ e }^{ -u }du }

I = e Γ ( 3 2 ) = e 1 2 Γ ( 1 2 ) I=e\cdot \Gamma \left( \frac { 3 }{ 2 } \right) =e\cdot \frac { 1 }{ 2 } \cdot \Gamma \left( \frac { 1 }{ 2 } \right) \qquad Gamma Function

I = 1 2 e π I=\frac { 1 }{ 2 } e\sqrt { \pi }

A = 1 2 , B = 1 , C = 1 2 A=\frac { 1 }{ 2 } ,B=1,C=\frac { 1 }{ 2 }

A + B + C = 2 A+B+C=2

Brandon Monsen
Sep 18, 2017

Let f ( x ) = 1 ln ( x ) f(x)=\sqrt{1-\ln(x)}

First, we notice that f ( x ) f(x) is strictly decreasing in its domain. Therefore, f ( x ) f(x) has an inverse function f 1 ( x ) f^{-1}(x) , which can be easily found to be f 1 ( x ) = e 1 x 2 f^{-1}(x)=e^{1-x^{2}}

If we look at our integral in the plane, we see that

I = 0 e f ( x ) d x = f ( 0 ) f ( e ) f 1 ( y ) d y = 0 e 1 y 2 d y I = \int_{0}^{e} f(x) \ dx = -\int_{f(0)}^{f(e)} f^{-1}(y) \ dy = \int_{0}^{\infty} e^{1-y^{2}} \ dy

We can rewrite the last form for I I as follows;

I = e 0 e y 2 d y I = e \int_{0}^{\infty} e^{-y^{2}}dy

Which contains the well known Gaussian Integral. Therefore, I = e π 2 I = \frac{e \sqrt{\pi}}{2} and we can obtain our final answer of 1 2 + 1 + 1 2 = 2 \frac{1}{2}+1+\frac{1}{2}=\boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...