*Pukes Mathematically I

Calculus Level 4

I = 0 π 2 d x 1 + 1 tan ( x ) 3 I=\int_{0}^{\frac{\pi}{2}}\frac{dx}{1+\frac{1}{\sqrt[3]{\tan(x)}}}

The integral above has a closed form. Find the value of this closed form.

Submit your answer as 1000 I \lfloor 1000I \rfloor .


The answer is 785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 19, 2016

I = 0 π 2 d x 1 + 1 tan x 3 Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 1 1 + 1 tan x 3 + 1 1 + 1 tan ( π 2 x ) 3 d x = 1 2 0 π 2 tan x 3 tan x 3 + 1 + 1 1 + 1 cot x 3 d x = 1 2 0 π 2 tan x 3 tan x 3 + 1 + 1 1 + tan x 3 d x = 1 2 0 π 2 1 d x = π 4 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {dx}{1+\frac 1{\sqrt[3]{\tan x}}} & \small \color{#3D99F6}{\text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^\frac \pi 2 \frac 1{1+\frac 1{\sqrt[3]{\tan x}}} + \frac 1{1+\frac 1{\sqrt[3]{\tan \left( \frac \pi 2 - x\right)}}} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\sqrt[3]{\tan x}}{\sqrt[3]{\tan x}+1} + \frac 1{1+\frac 1{\sqrt[3]{\cot x}}} dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac {\sqrt[3]{\tan x}}{\sqrt[3]{\tan x}+1} + \frac 1{1+\sqrt[3]{\tan x}} dx \\ & = \frac 12 \int_0^\frac \pi 2 1 \ dx \\ & = \frac \pi 4 \end{aligned}

1000 I = 1000 × π 4 = 785 \implies \lfloor 1000I \rfloor = \left \lfloor 1000 \times \frac \pi 4 \right \rfloor = \boxed{785}

Nice! I was so quick to break apart the tan ( x ) \tan(x) into sin \sin and cos \cos that I didn't stop to consider just outright making the integrating backwards substitution. +1

Brandon Monsen - 4 years, 7 months ago

Log in to reply

Nice problem.

Chew-Seong Cheong - 4 years, 7 months ago

Agreed, very nice! No puking involved here :)

Also easily extends to the I ( a ) I(a) generalization.

With definite integrals of trigonometric functions, it sometimes helps to verify that symmetry / even-odd functions can help to simplify the problem.

Calvin Lin Staff - 4 years, 7 months ago
Brandon Monsen
Oct 19, 2016

Let I ( a ) = 0 π 2 d x 1 + tan a ( x ) I(a)=\int_{0}^{\frac{\pi}{2}}\frac{dx}{1+\tan^{a}(x)}

Using the fact that tan ( x ) = sin ( x ) cos ( x ) \tan(x)=\frac{\sin(x)}{\cos(x)} :

I ( a ) = 0 π 2 d x 1 + sin a ( x ) cos a ( x ) = 0 π 2 d x cos a ( x ) + sin a ( x ) cos a ( x ) = 0 π 2 cos a ( x ) d x cos a ( x ) + sin a ( x ) I(a)=\int_{0}^{\frac{\pi}{2}}\frac{dx}{1+\frac{\sin^{a}(x)}{\cos^{a}(x)}}=\int_{0}^{\frac{\pi}{2}}\frac{dx}{\frac{\cos^{a}(x)+\sin^{a}(x)}{\cos^{a}(x)}}=\int_{0}^{\frac{\pi}{2}}\frac{\cos^{a}(x)dx}{\cos^{a}(x)+\sin^{a}(x)}

Now, let's integrate backwards, letting x = π 2 u x=\frac{\pi}{2}-u , and d u = d x du=-dx .

I ( a ) = π 2 0 cos a ( π 2 u ) d u cos a ( π 2 u ) + sin a ( π 2 u ) = 0 π 2 sin a ( u ) d u cos a ( u ) + sin a ( u ) I(a)=\int_{\frac{\pi}{2}}^{0}-\frac{\cos^{a}\left(\frac{\pi}{2}-u\right)du}{\cos^{a}\left(\frac{\pi}{2}-u\right)+\sin^{a}\left(\frac{\pi}{2}-u\right)}=\int_{0}^{\frac{\pi}{2}}\frac{\sin^{a}(u)du}{\cos^{a}(u)+\sin^{a}(u)}

Now adding the first and second expressions for I ( a ) I(a) :

2 I ( a ) = 0 π 2 cos a ( x ) d x cos a ( x ) + sin a ( x ) + sin a ( x ) d x cos a ( x ) + sin a ( x ) = 0 π 2 d x = π 2 2I(a)=\int_{0}^{\frac{\pi}{2}}\frac{\cos^{a}(x)dx}{\cos^{a}(x)+\sin^{a}(x)}+\frac{\sin^{a}(x)dx}{\cos^{a}(x)+\sin^{a}(x)}=\int_{0}^{\frac{\pi}{2}}dx=\frac{\pi}{2} I ( a ) = π 4 I(a)=\frac{\pi}{4}

Our original integral is simply I ( 1 3 ) = π 4 I\left(\frac{-1}{3}\right)=\frac{\pi}{4}

I = π 4 . 7853 I=\frac{\pi}{4} \approx .7853 , so 1000 I = 785 \lfloor 1000I \rfloor = \boxed{785} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...