Pulchritude

Calculus Level 5

1 n 1 < n 2 < n 3 1 n 1 2 n 2 2 n 3 2 \sum_{1\leq n_1<n_2<n_3}\frac{1}{n_1^2 n_2^2 n_3^2} If the above expression equals π r s \displaystyle \frac{\pi^r}{s} , where r r and s s are positive integers, what is r + s r+s ?


Here is the summation expanded to the "first" 10 terms:

1 1 2 2 2 3 2 + 1 1 2 2 2 4 2 + 1 1 2 3 2 4 2 + 1 2 2 3 2 4 2 + 1 1 2 2 2 5 2 + \frac{1}{ 1 ^2\cdot 2 ^2\cdot 3 ^2}+\frac{1}{ 1 ^2\cdot 2 ^2\cdot 4 ^2}+\frac{1}{ 1 ^2\cdot 3 ^2\cdot 4 ^2}+\frac{1}{ 2 ^2\cdot 3 ^2\cdot 4 ^2}+ \frac{1}{ 1 ^2\cdot 2 ^2\cdot 5 ^2}+

1 1 2 3 2 5 2 + 1 1 2 4 2 5 2 + 1 2 2 3 2 5 2 + 1 2 2 4 2 5 2 + 1 3 2 4 2 5 2 + \frac{1}{ 1 ^2\cdot 3 ^2\cdot 5 ^2}+\frac{1}{ 1 ^2\cdot 4 ^2\cdot 5 ^2}+\frac{1}{ 2 ^2\cdot 3 ^2\cdot 5 ^2}+\frac{1}{ 2 ^2\cdot 4 ^2\cdot 5 ^2}+\frac{1}{ 3 ^2\cdot 4 ^2\cdot 5 ^2}+\ldots

The sum is taken over all unordered triples { n 1 , n 2 , n 3 } \{n_1,n_2,n_3\} of distinct positive integers.

Alternatively, this can be represented as n 3 = 3 n 2 = 2 n 3 1 n 1 = 1 n 2 1 1 n 1 2 n 2 2 n 3 2 \displaystyle\sum_{n_3=3}^{\infty}\sum_{n_2=2}^{n_3-1}\sum_{n_1=1}^{n_2-1}\frac{1}{n_1^2 n_2^2 n_3^2} .


The answer is 5046.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Mar 20, 2016

The summation involves multiple zeta values. n 1 > n 2 > n 3 1 1 n 1 2 n 2 2 n 3 2 = ζ ( 2 , 2 , 2 ) \sum _{ { n }_{ 1 }>{ n }_{ 2 }>{ n }_{ 3 }\ge 1 }^{ }{ \frac { 1 }{ { n }_{ 1 }^{ 2 }{ n }_{ 2 }^{ 2 }{ n }_{ 3 }^{ 2 } } } =\zeta \left( 2,2,2 \right)

Now, by Newton's identities, we can write it as: ζ ( 2 , 2 , 2 ) = 3 16 ζ ( 6 ) \zeta \left( 2,2,2 \right) =\frac { 3 }{ 16 } \zeta \left( 6 \right)

Hence, we get: n 1 > n 2 > n 3 1 1 n 1 2 n 2 2 n 3 2 = π 6 5040 \sum _{ { n }_{ 1 }>{ n }_{ 2 }>{ n }_{ 3 }\ge 1 }^{ }{ \frac { 1 }{ { n }_{ 1 }^{ 2 }{ n }_{ 2 }^{ 2 }{ n }_{ 3 }^{ 2 } } }=\frac{\pi^6}{5040}

Keep on posting such problems!

You might be interested in reading Jake Lai's comment under Mark Henning's solution .

Pi Han Goh - 5 years, 2 months ago

Log in to reply

While solving the problem, I used that. While posting I posted a different one as I wanted others to learn about Zagier’s conjecture.

Aditya Kumar - 5 years, 2 months ago

You can also use Newton's identities, and derive that

ζ ( 2 , 2 , 2 ) = 1 3 ( ζ ( 6 ) ζ ( 2 ) ζ ( 4 ) + 1 2 ( ζ ( 2 ) 3 ζ ( 2 ) ζ ( 4 ) ) ) \zeta(2,2,2)=\frac{1}{3}\left(\zeta(6)-\zeta(2)\zeta(4)+\frac{1}{2}\left(\zeta(2)^3-\zeta(2)\zeta(4)\right)\right)

Julian Poon - 5 years, 2 months ago

Log in to reply

Can you show us your working? Thanks.

Pi Han Goh - 5 years, 2 months ago

Log in to reply

Through newton's identities

ζ ( 4 ) = ζ ( 2 ) 2 2 ζ ( 2 , 2 ) \zeta(4)=\zeta(2)^2 - 2\zeta(2,2)

ζ ( 2 , 2 ) = 1 2 ( ζ ( 2 ) 2 ζ ( 4 ) ) \zeta(2,2)=\frac{1}{2}\left(\zeta(2)^2-\zeta(4)\right)

Again through newton identities

ζ ( 2 , 2 , 2 ) = ζ ( 4 ) ζ ( 2 ) ζ ( 2 , 2 ) ζ ( 2 ) + 3 ζ ( 2 , 2 , 2 ) \zeta(2,2,2)=\zeta(4)\zeta(2) - \zeta(2,2)\zeta(2) + 3\zeta(2,2,2)

Putting it all together and solving for ζ ( 2 , 2 , 2 ) \zeta(2,2,2) gives the above result.

This is similar to what Mark Henning did on Jake Lai's Problem

Julian Poon - 5 years, 2 months ago

In one pdf i had seen this under Zagier’s conjecture. My method was the same.

Aditya Kumar - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...