Pure math 3 : 2 = 1!

Calculus Level 3

Identify the first invalid step in the following proof.

  1. x = 1 + 1 + 1 + . . . . . + 1 x times |x| = \underbrace{1 + 1 + 1 + ..... + 1}_{|x| \, \text{ times}}
  2. x × x = x + x + x + . . . . . + x x times |x| \times |x| = \underbrace{|x + x + x + ..... + x|}_{|x| \, \text{ times}}
  3. x 2 = x + x + x + . . . . . + x x times x^2 = \underbrace{|x + x + x + ..... + x|}_{|x| \, \text{ times}}
  4. d d x ( x 2 ) = d d x ( x + x + x + . . . . . + x x times ) \dfrac{d}{dx}(x^2) = \dfrac{d}{dx}(\underbrace{|x + x + x + ..... + x|}_{|x| \, \text{ times}})
  5. 2 x = 1 + 1 + . . . . . + 1 x times 2x = \underbrace{1 + 1 + ..... + 1}_{|x| \, \text{ times}}
  6. 2 x = x 2x = x
  7. 2 = 1 2 = 1
7 6 4 1 5 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jul 16, 2016

x 2 = x + x + x + + x x times is only true for x I + It is a discontinuous function , which means it is not differentiable x^2 = \underbrace{x+x+x+\cdots+x}_{x \text{times}} \text{ is only true for } x\in \mathbb I^{+} \\ \text{It is a discontinuous function , which means it is not differentiable }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...