The Monstrous Limit

Calculus Level 3

lim n ( n ! n n ) 1 / n \large \displaystyle \lim_{n \to \infty} \left( \dfrac{n!}{n^n} \right)^{1/n}

Find the limit to 3 decimal places.

Notation :
! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


Try more here


The answer is 0.3678.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Mar 20, 2016

Let L = lim n ( n ! n n ) 1 / n \large\mathfrak L= \displaystyle \lim_{n \to \infty} \left( \dfrac{n!}{n^n} \right)^{1/n} ln L = lim n 1 n ln ( n ! n n ) \large\implies \ln \mathfrak L=\displaystyle \lim_{n \to \infty}\dfrac{1}{n} \ln \left( \dfrac{n!}{n^n} \right) = lim n 1 n ln ( n ( n 1 ) ( n 2 ) 1 n n n n n times ) \large =\lim_{n \to \infty}\dfrac{1}{n} \ln \left( \dfrac{n\cdot( n-1)\cdot(n-2) \cdots 1}{\underbrace{n\cdot n\cdot n \cdots n}_{\color{#D61F06}{\text{n times}}}} \right) = lim n 1 n ln ( ( 1 ) ( 1 1 n ) ( 1 2 n ) ( 1 n ) ) =\lim_{n \to \infty}\dfrac{1}{n} \ln\left( \left(1\right)\cdot \left( 1-\dfrac{1}{n}\right)\cdot \left(1-\dfrac{2}{n}\right)\cdots \left(\dfrac{1}{n}\right)\right) = lim n 1 n ln ( r = 0 n 1 ( 1 r n ) ) \large =\lim_{n \to \infty}\dfrac{1}{n} \ln \left(\prod_{r=0}^{n- 1}\left(1-\dfrac{r}{n}\right)\right) = lim n 1 n r = 0 n 1 ln ( 1 r n ) \large =\lim_{n \to \infty}\dfrac{1}{n} \sum_{r=0}^{n-1}\ln \left(1-\dfrac{r}{n}\right) Applying Reimann Sums , ln L = 0 1 ln ( 1 x ) d x = 0 1 ln x d x \ln \mathfrak L=\int_0^1 \ln(1-x)\,dx=\int_0^1\ln x\,dx = 1 \Large = -1 L = 1 e 0.368 \therefore \mathfrak L=\dfrac 1e\approx \Huge\color{#456461}{\boxed{\color{#EC7300}{\boxed{\color{#0C6AC7}{\mathbf{0.368}}}}}}


Bonus: lim n 1 n ln ( ( 2 n ) ! n n n ! ) \color{#20A900}{\Large{\text{Bonus:}~\lim_{n\to \infty}\dfrac 1n\ln\left(\dfrac{(2n)!}{n^n n!}\right)}}

Nice solution! +1! and problem too!

BONUS

lim n 1 n ln ( ( 2 n ) ! n n n ! ) = lim n 1 n ln ( 1 n n × ( 2 n ) ! n ! ) = lim n 1 n ln ( n ! n n × ( 2 n ) ! n ! × n ! ) = lim n 1 n ( ln ( n ! n n ) + ln ( ( 2 n ) ! n ! × n ! ) ) = lim n 1 n ( ln ( n ! n n ) + ln ( ( 2 n n ) ) ) \displaystyle \lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \ln { \left( \frac { \left( 2n \right) ! }{ { n }^{ n }n! } \right) } } =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \ln { \left( \frac { 1 }{ { n }^{ n } } \times \frac { \left( 2n \right) ! }{ n! } \right) } \\ =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \ln { \left( \frac { n! }{ { n }^{ n } } \times \frac { \left( 2n \right) ! }{ n!\times n! } \right) } \\ =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \frac { n! }{ { n }^{ n } } \right) } +\ln { \left( \frac { \left( 2n \right) ! }{ n!\times n! } \right) } \right) \\ =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \frac { n! }{ { n }^{ n } } \right) } +\ln { \left( \left( \begin{matrix} 2n \\ n \end{matrix} \right) \right) } \right)

The n + 1 n+1 th central binomial coefficients is about 4 times the n n th one, so...

lim n 1 n ( ln ( n ! n n ) + ln ( 4 n ) ) = lim n 1 n ( ln ( n ! n n ) + n ln ( 4 ) ) = lim n 1 n ( ln ( n ! n n ) ) + ln 4 \displaystyle \lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \frac { n! }{ { n }^{ n } } \right) } +\ln { \left( { 4 }^{ n } \right) } \right) =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \frac { n! }{ { n }^{ n } } \right) } +n\ln { \left( { 4 } \right) } \right) \\ =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \frac { n! }{ { n }^{ n } } \right) } \right) +\ln { 4 }

Now using stirling's,

lim n 1 n ( ln ( ( n e ) n 2 π n n n ) ) + ln 4 = lim n 1 n ( ln ( ( 1 e ) n 2 π n ) ) + ln 4 = lim n 1 n ( n + ln ( 2 π n ) ) + ln 4 = lim n 1 n ( ln ( 2 π n ) ) + ln 4 1 = ln 4 1 \displaystyle \lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \frac { { \left( \frac { n }{ e } \right) }^{ n }\sqrt { 2\pi n } }{ { n }^{ n } } \right) } \right) +\ln { 4 } =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( { \left( \frac { 1 }{ e } \right) }^{ n }\sqrt { 2\pi n } \right) } \right) +\ln { 4 } \\ =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( -n+\ln { \left( \sqrt { 2\pi n } \right) } \right) +\ln { 4 } \\ =\lim _{ n\rightarrow \infty } \frac { 1 }{ n } \left( \ln { \left( \sqrt { 2\pi n } \right) } \right) +\ln { 4 } -1\\ =\ln { 4 } -1

Joel Yip - 5 years, 1 month ago

Same way! (+1)

Harsh Khatri - 5 years, 2 months ago

Great solution! (+1)

neelesh vij - 5 years, 2 months ago

Is the answer for bonus question 2 ln 2 1 2 \ln{2} -1 ?

neelesh vij - 5 years, 2 months ago

Log in to reply

Absolutely Right..

Rishabh Jain - 5 years, 2 months ago
Michael Mendrin
Mar 21, 2016

This follows from Stirling’s approximation

n ! = 2 π n ( n e ) n n!=\sqrt { 2\pi n } { \left( \dfrac { n }{ e } \right) }^{ n }

which can be re-written as

1 e = ( n ! n n ) 1 n ( 2 π n ) 1 2 n \dfrac { 1 }{ e } ={ \left( \dfrac { n! }{ { n }^{ n } } \right) }^{ \frac { 1 }{ n } }{ \left( 2\pi n \right) }^{ -\frac { 1 }{ 2n } }

And so the right factor on the right side drops out as n n\rightarrow \infty

Let's start by considering the following process.

lim n ( n ! n n ) 1 n = lim n ( n ! n n × n + 1 n + 1 ) 1 n \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { n! }{ { n }^{ n } } \right) }^{ \frac { 1 }{ n } } } =\lim _{ n\rightarrow \infty }{ { \left( \frac { n! }{ { n }^{ n } } \times \frac { n+1 }{ n+1 } \right) }^{ \frac { 1 }{ n } } }

lim n ( n ! n n × n + 1 n + 1 ) 1 n = lim n ( ( n + 1 ) ! ( n + 1 ) n n ) 1 n \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { n! }{ { n }^{ n } } \times \frac { n+1 }{ n+1 } \right) }^{ \frac { 1 }{ n } } } =\lim _{ n\rightarrow \infty }{ { \left( \frac { (n+1)! }{ (n+1){ n }^{ n } } \right) }^{ \frac { 1 }{ n } } }

Let

n + 1 = N \displaystyle n+1=N

Then

lim n ( ( n + 1 ) ! ( n + 1 ) n n ) 1 n = lim N ( N ! N ( N 1 ) N 1 ) 1 n \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { (n+1)! }{ (n+1){ n }^{ n } } \right) }^{ \frac { 1 }{ n } } } =\lim _{ N\rightarrow \infty }{ { \left( \frac { N! }{ N{ (N-1) }^{ N-1 } } \right) }^{ \frac { 1 }{ n } } }

lim N ( N ! N N ( 1 1 N ) N 1 ) 1 n = lim N ( N ! × e N N ) 1 n \displaystyle \lim _{ N\rightarrow \infty }{ { \left( \frac { N! }{ { N }^{ N }{ (1-\frac { 1 }{ N } ) }^{ N-1 } } \right) }^{ \frac { 1 }{ n } } } =\lim _{ N\rightarrow \infty }{ { \left( \frac { N!\times e }{ { N }^{ N } } \right) }^{ \frac { 1 }{ n } } }

Hence,

lim n ( n ! n n ) 1 n = lim n ( ( n + 1 ) ! × e ( n + 1 ) n + 1 ) 1 n \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { n! }{ { n }^{ n } } \right) }^{ \frac { 1 }{ n } } } =\lim _{ n\rightarrow \infty }{ { \left( \frac { (n+1)! \times e}{ { (n+1) }^{ n+1 } } \right) }^{ \frac { 1 }{ n } } }

And one can deduce that

lim n ( n ! n n ) 1 n = lim n ( ( n + k ) ! × e k ( n + k ) n + k ) 1 n \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { n! }{ { n }^{ n } } \right) }^{ \frac { 1 }{ n } } } =\lim _{ n\rightarrow \infty }{ { \left( \frac { (n+k)! \times { e }^{ k }}{ { (n+k) }^{ n+k } } \right) }^{ \frac { 1 }{ n } } }

Now, let k = n \displaystyle k=n

lim n ( n ! n n ) 1 n = lim n ( ( n + n ) ! × e n ( n + n ) n + n ) 1 n \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { n! }{ { n }^{ n } } \right) }^{ \frac { 1 }{ n } } } =\lim _{ n\rightarrow \infty }{ { \left( \frac { (n+n)!\times { e }^{ n } }{ { (n+n) }^{ n+n } } \right) }^{ \frac { 1 }{ n } } }

lim n ( ( 2 n ) ! × e n ( 2 n ) 2 n ) 2 2 n = ( lim n ( ( 2 n ) ! ( 2 n ) 2 n ) 1 2 n × e 1 2 ) 2 \displaystyle \lim _{ n\rightarrow \infty }{ { \left( \frac { (2n)! \times { e }^{ n } }{ { (2n) }^{ 2n }} \right) }^{ \frac { 2 }{ 2n } } } ={ \left( \lim _{ n\rightarrow \infty }{ { \left( \frac { (2n)! }{ { (2n) }^{ 2n } } \right) }^{ \frac { 1 }{ 2n } } } \times { e }^{ \frac { 1 }{ 2 } } \right) }^{ 2 }

Let the limit equal to L then,

( lim n ( ( 2 n ) ! ( 2 n ) 2 n ) 1 2 n × e 1 2 ) 2 = L 2 e = L \displaystyle { \left( \lim _{ n\rightarrow \infty }{ { \left( \frac { (2n)! }{ { (2n) }^{ 2n } } \right) }^{ \frac { 1 }{ 2n } } } \times { e }^{ \frac { 1 }{ 2 } } \right) }^{ 2 }={ L }^{ 2 }e=L

L = 1 e \displaystyle L=\boxed{\frac { 1 }{ e }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...