Putnam 1998.

Algebra Level 3

Find the minimum value of ( x + 1 / x ) 6 ( x 6 + 1 / x 6 ) 2 ( x + 1 / x ) 3 + ( x 3 + 1 / x 3 ) \frac{(x+1/x)^6-(x^6+1/x^6)-2}{(x+1/x)^3+(x^3+1/x^3)} for x > 0 x>0 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Apr 30, 2019

Similar solution with @Hana Wehbi 's

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) Note that ( x 3 + 1 x 3 ) 2 = x 6 + 2 + 1 x 6 = ( x + 1 x ) 6 ( x 3 + 1 x 3 ) 2 + 2 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 6 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = [ ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ] [ ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ] ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 3 ( x 3 + 1 x 3 ) = 3 ( x + 1 x ) By AM-GM inequality: x + 1 x 2 x × 1 x = 2 3 × 2 = 6 Equality occurs when x = 1 \begin{aligned} f(x) & = \frac {\left(x + \frac 1x\right)^6 - {\color{#3D99F6}\left(x^6 + \frac 1{x^6}\right)} - 2}{\left(x + \frac 1x\right)^3 + \left(x^3 + \frac 1{x^3}\right)} & \small \color{#3D99F6} \text{Note that }\left(x^3 + \frac 1{x^3}\right)^2 = x^6 + 2 + \frac 1{x^6} \\ & = \frac {\left(x + \frac 1x\right)^6 - {\color{#3D99F6}\left(x^3 + \frac 1{x^3}\right)^2+2} - 2}{\left(x + \frac 1x\right)^3 + \left(x^3 + \frac 1{x^3}\right)} \\ & = \frac {\left(x + \frac 1x\right)^6 - \left(x^3 + \frac 1{x^3}\right)^2}{\left(x + \frac 1x\right)^3 + \left(x^3 + \frac 1{x^3}\right)} \\ & = \frac {\left[\left(x + \frac 1x\right)^3 + \left(x^3 + \frac 1{x^3}\right)\right]\left[\left(x + \frac 1x\right)^3 - \left(x^3 + \frac 1{x^3}\right)\right]}{\left(x + \frac 1x\right)^3 + \left(x^3 + \frac 1{x^3}\right)} \\ & = \left(x + \frac 1x\right)^3 - \left(x^3 + \frac 1{x^3}\right) \\ & = 3 \left(\color{#3D99F6} x+\frac 1x\right) & \small \color{#3D99F6} \text{By AM-GM inequality: } x + \frac 1x \ge 2 \sqrt {x \times \frac 1x} = 2 \\ & \ge 3 \times {\color{#3D99F6} 2} = \boxed{6} & \small \color{#3D99F6} \text{Equality occurs when } x=1 \end{aligned}


Reference: AM-GM inequality

On expanding (x+1/x)^6 and (x+1/x)^3 and simplifying the given expression, we get the given expression equal to 3(x+1/x). Since the minimum of (x+1/x) for x>0 is 2, therefore the minimum of the given expression is (3)(2)=6

Hana Wehbi
Apr 29, 2019

Let's start by expanding f ( x ) f(x) :

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large f(x)= \Large \frac{(x+\frac{1}{x})^6 -(x^6 +\frac{1}{x^6}) -2}{(x+\frac{1}{x})^3 +(x^3 +\frac{1}{x^3})} =

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 + 2 ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large f(x)= \Large \frac{(x+\frac{1}{x})^6 -(x^6 +\frac{1}{x^6} +2) }{(x+\frac{1}{x})^3 +(x^3 +\frac{1}{x^3})} =

f ( x ) = ( ( x + 1 x ) 3 ) 2 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large f(x)= \Large \frac{((x+\frac{1}{x})^3)^2 - (x^3 +\frac{1}{x^3})^2}{(x+\frac{1}{x})^3 +(x^3 +\frac{1}{x^3})} =

f ( x ) = ( ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ) × ( ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \large f(x)= \Large \frac{((x+\frac{1}{x})^3 +(x^3 +\frac{1}{x^3})) \times ((x+\frac{1}{x})^3 - (x^3 +\frac{1}{x^3}) )}{(x+\frac{1}{x})^3 +(x^3 +\frac{1}{x^3})} =

f ( x ) = ( x + 1 x ) 3 ( x 3 + 1 x 3 ) = 3 x + 3 x . f(x)=(x+\frac{1}{x})^3 - (x^3 +\frac{1}{x^3})= 3x +\frac{3}{x}.

f ( x ) = 3 3 x 2 = 0 x = ± 1. f'(x)= 3-\frac{3}{x^2} =0 \implies x=\pm 1.

Since x > 0 x>0 the critical point is at x = 1. x=1.

f " ( x ) = 1 x 3 f " ( 1 ) = 1 > 0 x = 1 f"(x)=\frac{1}{x^3} \implies f"(1)=1 >0 \implies x=1 gives a minimum at f ( 1 ) = 3 ( 1 ) + 1 1 = 6 f(1)= 3(1)+\frac{1}{1} =\boxed{6} since f ( x ) = 3 x + 1 x . f(x)=3x+\frac{1}{x}.

( x 6 + 1 x 6 ) + ( x + 1 x ) 6 2 ( x 3 + 1 x 3 ) + ( x + 1 x ) 3 3 3 x 2 \frac{-\left(x^6+\frac{1}{x^6}\right)+\left(x+\frac{1}{x}\right)^6-2}{\left(x^3+\frac{1}{x^3}\right)+\left(x+\frac{1}{x}\right)^3} \Rightarrow 3-\frac{3}{x^2}

( 3 x + 3 x ) x = 0 x 1 , x 1 \frac{\partial \left(3 x+\frac{3}{x}\right)}{\partial x}=0 \Rightarrow x\to -1, x\to 1

With the problem specified limitation on the value of x and using the simplified form, the answer is 6.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...