Putnam 1998

Algebra Level 3

f ( x ) = ( x + 1 / x ) 6 ( x 6 + 1 / x 6 ) 2 ( x + 1 / x ) 3 + ( x 3 + 1 / x 3 ) \large f(x)=\frac{(x+1/x)^{6}-(x^{6}+1/x^{6})-2}{(x+1/x)^{3}+(x^{3}+1/x^{3})} Find the minimum value of f ( x ) f(x) above for real x > 0 x>0 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 17, 2017

f ( x ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 6 ( x 6 + 1 x 6 + 2 ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = [ ( x + 1 x ) 3 ] 2 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = [ ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ] [ ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ] ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 3 ( x 3 + 1 x 3 ) = 3 x + 3 x \begin{aligned} f(x)&=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\\ &=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}+2\right)}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\\ &=\dfrac{\left[\left(x+\dfrac{1}{x}\right)^3\right]^2-\left(x^3+\dfrac{1}{x^3}\right)^2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\\ &=\dfrac{\left[\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)\right]\cdot\left[\left(x+\dfrac{1}{x}\right)^3-\left(x^3+\dfrac{1}{x^3}\right)\right]}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\\ &=\left(x+\dfrac{1}{x}\right)^3-\left(x^3+\dfrac{1}{x^3}\right)=3x+\dfrac{3}{x} \end{aligned}

Taking the first derivative and setting it equal to 0 0 to find the critical points

f ( x ) = 3 3 x 2 = 0 x = ± 1 f'(x)=3-\dfrac{3}{x^2}=0\iff x=\pm 1

Since x > 0 x>0 the critical point is at x = 1 x=1

f ( 1 ) = 1 x 3 1 = 1 > 0 f''(1)=\left.\dfrac{1}{x^3}\right|_{1}=1>0

So this point is a minimum, hence

min { f ( x ) } = f ( 1 ) = 3 x + 1 x 1 = 6 \min\{f(x)\}=f(1)=\left. 3x+\dfrac{1}{x}\right|_{1} =\boxed{6}

Thank you. Very nice and logical.

Hana Wehbi - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...