Putnam '69 B3

Calculus Level 5

If a 1 a 2 = 1 , a 2 a 3 = 2 , a 3 a 4 = 3 a_1a_2 = 1, a_2a_3 = 2, a_3a_4 = 3 \cdots and lim n a n a n + 1 = 1 \displaystyle \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1 , find a 1 | a_1| .


The answer is 0.797885.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adhiraj Dutta
May 26, 2020

Let us substitute a few values to get an essence of the sequence -

a 2 = 1 a 1 a 3 = 2 a 1 a 4 = 3 2 a 1 a 5 = 4 2 a 1 3 a 6 = 3 5 a 1 2 4 a 7 = a 1 2 4 6 3 5 a 8 = 3 5 7 a 1 2 4 6 a 9 = a 1 2 4 6 8 3 5 7 So the general terms are a 2 n = 3 5 7 ( 2 n 1 ) a 1 2 4 6 ( 2 n 2 ) a 2 n + 1 = a 1 2 4 6 ( 2 n ) 3 5 7 ( 2 n 1 ) \begin{aligned} a_2 &= \dfrac1{a_1} \\ a_3 &= 2a_1 \\ a_4 &= \dfrac3{2a_1} \\ a_5 &= \dfrac{4 \cdot 2a_1}{3} \\ a_6 &= \dfrac{3 \cdot 5}{a_1 \cdot 2 \cdot 4} \\ a_7 &= \dfrac{a_1 \cdot 2 \cdot 4 \cdot 6}{3 \cdot 5} \\ a_8 &= \dfrac{3 \cdot 5 \cdot 7}{a_1 \cdot 2 \cdot 4 \cdot 6} \\ a_9 &= \dfrac{a_1 \cdot 2 \cdot 4 \cdot 6 \cdot 8}{3 \cdot 5 \cdot 7} \\ \text{So the general terms are } \\ a_{2n} &= \dfrac{3 \cdot 5 \cdot 7 \cdots (2n-1)}{a_1 \cdot 2 \cdot 4 \cdot 6 \cdots (2n-2)} \\ a_{2n+1} &= \dfrac{a_1 \cdot 2 \cdot 4 \cdot 6 \cdots (2n)}{3 \cdot 5 \cdot 7 \cdots (2n-1)} \end{aligned}

a 2 n a 2 n + 1 = 1 3 3 5 5 ( 2 n 1 ) 2 ( a 1 ) 2 2 2 4 4 6 ( 2 n 2 ) 2 ( 2 n ) \begin{aligned} \implies \dfrac{a_{2n}}{a_{2n+1}} &= \dfrac{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdots (2n-1)^2}{(a_1)^2 \cdot 2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdots (2n-2)^2 \cdot (2n)} \end{aligned}

Using Wallis Product , as n n \to \infty

1 = 1 ( a 1 ) 2 2 π a 1 = 2 π \begin{aligned} 1 &= \dfrac1{(a_1)^2} \cdot \dfrac2\pi \\ \implies a_1 &= \sqrt{\dfrac2\pi} \end{aligned}

I use double factorial then convert it to standard factorial. Then calculate the limit using Stirling's formula

Lingga Musroji - 1 year ago

Log in to reply

Why don't you post a solution?

Adhiraj Dutta - 1 year ago

yeah, I posted it

Lingga Musroji - 1 year ago
Lingga Musroji
May 29, 2020

My latex experience is not good. So I typed in Word and screenshot it to here. I skipped the last limit calculation because I think it's well-known.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...