Putting it through twice

Calculus Level 3

f ( x ) = n = 0 sin ( x n ) 7 n f\left( x \right) =\sum _{ n=0 }^{ \infty }{ \frac { \sin { \left( xn \right) } }{ { 7 }^{ n } } } For all real numbers x x , let f ( x ) f(x) be a function with fundamental period P P .

Let a = 0 P / 2 f ( x ) d x \displaystyle a = \int_0^{P/2} f(x) \, dx . If f ( π e a ) f \left( \pi e^{|a|} \right) can be expressed as α β γ -\dfrac{\alpha\sqrt \beta}{\gamma} , where α , β \alpha, \beta and γ \gamma are positive integers with α , γ \alpha, \gamma coprime and β \beta square-free, find α + β + γ \alpha + \beta + \gamma .


The answer is 124.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 10, 2016

Relevant wiki: Taylor Series - Problem Solving

f ( x ) = n = 0 sin ( n x ) 7 n Since sin 0 = 0 = n = 1 sin ( n x ) 7 n = n = 1 ( e i n x ) 7 n = ( n = 1 ( e i x 7 ) n ) = ( e i x 7 1 e i x 7 ) = ( e i x 7 e i x ) = ( cos x + i sin x 7 cos x i sin x ) = ( ( cos x + i sin x ) ( 7 cos x + i sin x ) ( 7 cos x i sin x ) ( 7 cos x + i sin x ) ) = ( 7 cos x cos 2 x + i sin x cos x + 7 i sin x i sin x cos x sin 2 x 49 14 cos x + cos 2 x + sin 2 x ) = ( 7 cos x 1 + 7 i sin x 50 14 cos x ) \begin{aligned} f(x) & = \sum_{n=\color{#D61F06}{0}}^\infty \frac {\sin(nx)}{7^n} \quad \quad \small \color{#D61F06}{\text{Since }\sin 0 = 0} \\ & = \sum_{n=\color{#D61F06}{1}}^\infty \frac {\sin(nx)}{7^n} = \sum_{n=1}^\infty \frac {\Im \left( e^{inx}\right)}{7^n} = \Im \left( \sum_{n=1}^\infty \left(\frac {e^{ix}}7\right)^n \right) = \Im \left( \frac {\frac{e^{ix}}7}{1-\frac{e^{ix}}7} \right) \\ & = \Im \left( \frac {e^{ix}}{7-e^{ix}} \right) = \Im \left( \frac {\cos x + i \sin x}{7-\cos x - i \sin x} \right) \\ & = \Im \left( \frac {(\cos x + i \sin x)(7-\cos x + i \sin x)}{(7-\cos x - i \sin x)(7-\cos x + i \sin x)} \right) \\ & = \Im \left( \frac {7\cos x - \cos^2 x + i \sin x \cos x + 7i\sin x - i \sin x \cos x - \sin^2 x}{49-14\cos x + \cos^2 x + \sin^2 x} \right) \\ & = \Im \left( \frac {7\cos x - 1 + 7i\sin x }{50-14\cos x} \right) \end{aligned}

f ( x ) = 7 sin x 50 14 cos x \begin{aligned} \implies f(x) & = \frac {7\sin x}{50-14\cos x} \end{aligned}

Now, we have:

a = 0 π 7 sin x 50 14 cos x d x P / 2 = π = 0 π 1 2 14 sin x 50 14 cos x d x = 0 π 1 2 d d x ln ( 50 14 cos x ) d x = 1 2 ( ln 64 ln 36 ) a = ln 4 3 \begin{aligned} a & = \int_0^\color{#3D99F6}{\pi} \frac {7\sin x}{50-14\cos x} dx & \small \color{#3D99F6}{P/2 = \pi} \\ & = \int_0^\pi \frac 12 \cdot \frac {14\sin x}{50-14\cos x} dx \\ & = \int_0^\pi \frac 12 \cdot \frac d{dx} \ln \left(50-14\cos x \right) dx \\ & = \frac 12 \left(\ln 64 - \ln 36 \right) \\ \implies a & = \ln \frac 43 \end{aligned}

And finally,

f ( π e a ) = f ( π e ln 4 3 ) = f ( 4 3 π ) = 7 sin 4 3 π 50 14 cos 4 3 π = 7 3 100 + 14 = 7 3 114 \begin{aligned} f \left(\pi e^{|a|} \right) & = f \left(\pi e^{\ln \frac 43} \right) = f \left(\frac 43 \pi \right) \\ & = \frac {7\sin \frac 43 \pi }{50-14\cos \frac 43 \pi} = \frac {-7\sqrt 3}{100+14} = - \frac {7\sqrt 3}{114} \end{aligned}

α + β + γ = 7 + 3 + 114 = 124 \implies \alpha + \beta + \gamma = 7+3+114 = \boxed{124}

Indronil Ghosh
Jul 9, 2016

Relevant wiki: Taylor Series - Problem Solving

Since sin ( x 0 ) 7 0 = 0 \frac{\sin(x \cdot 0)}{7^0} = 0 for all x x , let us first redefine f ( x ) = n = 1 sin ( x n ) c n f(x) = \sum_{n=1}^\infty \frac{\sin(x \cdot n)}{c^n} , where c c is a constant that we will eventually replace with 7 7 . Now we first find the closed form of f ( x ) f(x) .

n = 1 sin ( x n ) c n \displaystyle \sum_{n=1}^\infty \frac{\sin(x \cdot n)}{c^n}

= Im { n = 1 e i x n c n } \displaystyle = \text{Im}\left\{\sum_{n=1}^\infty \frac{e^{ixn}}{c^n}\right\}

= Im { n = 1 ( e i x c ) n } \displaystyle = \text{Im}\left\{\sum_{n=1}^\infty \left(\frac{e^{ix}}{c}\right)^n \right\}

= Im { e i x / c 1 e i x / c } \displaystyle = \text{Im}\left\{\frac{e^{ix}/c}{1-e^{ix}/c}\right\}

= Im { cos x + i sin x c cos x i sin x } \displaystyle = \text{Im}\left\{\frac{\cos x + i\sin x}{c-\cos x - i\sin x}\right\}

= Im { cos x c cos x i sin x c cos x + i sin x c cos x + i sin x + i sin x c cos x i sin x c cos x + i sin x c cos x + i sin x } \displaystyle = \text{Im}\left\{\frac{\cos x}{c-\cos x - i\sin x}\cdot \frac{c-\cos x + i\sin x}{c-\cos x + i\sin x} + \frac{i\sin x}{c-\cos x - i\sin x} \cdot \frac{c-\cos x + i\sin x}{c-\cos x + i\sin x}\right\}

= Im { c cos x cos 2 x + i sin x cos x i sin x cos x sin 2 x + i a sin x c 2 2 c cos x + cos 2 x + sin 2 x } \displaystyle = \text{Im}\left\{\frac{c\cos x - \cos^2 x + i\sin x\cos x - i\sin x\cos x - \sin^2 x + ia\sin x}{c^2-2c\cos x +\cos^2 x + \sin^2 x}\right\}

= Im { c cos x 1 + i c sin x c 2 2 c cos x + 1 } \displaystyle = \text{Im}\left\{\frac{c\cos x - 1 + ic\sin x}{c^2-2c\cos x + 1}\right\}

= c sin x c 2 2 c cos x + 1 \displaystyle = \frac{c\sin x}{c^2-2c\cos x + 1}

The area a a between f ( x ) f(x) and the x x -axis over a half-period of f ( x ) f(x) is 0 π c sin x c 2 2 c cos x + 1 d x \displaystyle\int_0^\pi \frac{c\sin x}{c^2-2c\cos x + 1} \, \mathrm{d}x .

We perform the u u -substitution u = c cos x u = -c\cos x , d u = c sin x \mathrm{d}u = c\sin x , giving

c c d u c 2 + 2 u + 1 = 1 2 ( ln c 2 + 2 c + 1 2 ln c 2 2 c + 1 2 ) = ln c + 1 c 1 \displaystyle \int_{-c}^{c} \frac{\mathrm{d}u}{c^2 + 2u + 1} = \frac{1}{2}\left( \ln\frac{c^2+2c+1}{2} - \ln\frac{c^2-2c+1}{2}\right) = \ln\frac{c+1}{c-1} .

Substituting in c = 7 c=7 results in a = ln 8 6 = ln 4 3 . a = \ln \frac{8}{6} = \ln \frac{4}{3}. Finally, the argument we pass into f ( x ) f(x) is π e ln 4 / 3 = 4 π 3 \pi e^{\left|\ln 4/3\right|} = \frac{4\pi}{3} .

f ( 4 π 3 ) = 3 / 2 7 7 2 + 2 7 / 2 + 1 = 7 3 114 \displaystyle f\left(\frac{4\pi}{3}\right) = \frac{-\sqrt{3}/2 \cdot 7}{7^2 + 2\cdot 7/2 + 1} = \frac{-7\sqrt{3}}{114} .

How did you know that the "half-period" of f ( x ) f(x) is π \pi ?

Pi Han Goh - 4 years, 11 months ago

Log in to reply

I reasoned that a half-period of f ( x ) f(x) must lie between two consecutive zeroes of f ( x ) f(x) . Observing the sin x \sin x numerator, we know that f ( 0 ) = c sin 0 = 0 f(0) = \frac{c\sin 0}{\cdots} = 0 and f ( π ) = c sin π = 0 f(\pi) = \frac{c\sin \pi}{\cdots} = 0 , and therefore, the half-period of f ( x ) f(x) is π \pi . I see that I left this out of my solution, thanks for bringing it up!

Indronil Ghosh - 4 years, 11 months ago

Have the limits been transformed correctly in the penultimate line after the ' u = c c o s ( x ) u = -c cos(x) ' substitution?

oscar donlan - 4 years, 11 months ago

Log in to reply

Ah I did have them switched up, thanks for catching that!

Indronil Ghosh - 4 years, 11 months ago

Hi. I need help please!! We have this Mathematical Investigation subject. It's either we make Mathematical Modeling or Another Formula or Games related to Math. Huhu. I really don't know what and how to do it. Help me please.

Char Galvez - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...