Pyramid Craze!

Geometry Level pending

Let n 3 n \geq 3 and V ( n ) V(n) be the volume of the largest n n -gonal pyramid that is inscribed in a sphere of radius R R .

If θ n \theta_{n} is the angle (in degrees) made between two adjacent faces of the n n -gonal pyramid and λ n \lambda_{n} is the slant height angle(in degrees) of the n n -gonal pyramid, find

tan 2 ( λ n ) sec 2 ( λ n ) cos ( θ n ) \tan^2(\lambda_{n}) - \sec^2(\lambda_{n}) * \cos(\theta_{n}) .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 24, 2020

O P 2 sin 2 ( π n ) r i + sin ( 2 π n ) r j + 0 k \vec{OP} - -2\sin^2(\dfrac{\pi}{n})r\vec{i} + \sin(\dfrac{2\pi}{n})r\vec{j} + 0\vec{k}

O S = r i + 0 j + H k \vec{OS} = -r\vec{i} + 0\vec{j} + H\vec{k}

O R 2 sin 2 ( π ( n 1 ) n ) r i + sin ( 2 π ( n 1 ) n ) r j + 0 k \vec{OR} - -2\sin^2(\dfrac{\pi(n - 1)}{n})r\vec{i} + \sin(\dfrac{2\pi(n - 1)}{n})r\vec{j} + 0\vec{k}

\implies

U = O P X O S = sin ( 2 π n ) r H i + 2 sin 2 ( π n ) r H j + sin ( 2 π n ) r 2 k \vec{U} = \vec{OP} \:\ X \:\ \vec{OS} = \sin(\dfrac{2\pi}{n})rH\vec{i} + 2\sin^2(\dfrac{\pi}{n})rH\vec{j} + \sin(\dfrac{2\pi}{n})r^2\vec{k}

V = O R X O S = sin ( 2 π ( n 1 ) n ) r H i + 2 sin 2 ( π ( n 1 ) n ) r H j + sin ( 2 π ( n 1 ) n ) r 2 k \vec{V} = \vec{OR} \:\ X \:\ \vec{OS} = \sin(\dfrac{2\pi(n - 1)}{n})rH\vec{i} + 2\sin^2(\dfrac{\pi(n - 1)}{n})rH\vec{j} + \sin(\dfrac{2\pi(n - 1)}{n})r^2\vec{k}

After simplifying and using the fact that cos ( π w ) = cos ( w ) , sin ( π w ) = sin ( w ) \cos(\pi - w) = -\cos(w), \sin(\pi - w) = \sin(w) and sin ( 2 w ) = 2 sin ( w ) cos ( w ) \sin(2w) =2\sin(w)\cos(w) we obtain:

U V = 4 r 2 sin 2 ( π n ) ( cos ( 2 π n ) H 2 + cos 2 ( π n ) r 2 ) \vec{U} \circ \vec{V} = -4r^2\sin^2(\dfrac{\pi}{n})(\cos(\dfrac{2\pi}{n})H^2 + \cos^2(\dfrac{\pi}{n})r^2)

U = 2 r sin ( π n ) H 2 + cos 2 ( π n ) r 2 = V |\vec{U}| = 2r\sin(\dfrac{\pi}{n})\sqrt{H^2 + \cos^2(\dfrac{\pi}{n})r^2} = |\vec{V}|

cos ( θ n ) = U V U V = \implies \cos(\theta_{n}) = \dfrac{\vec{U} \circ \vec{V}}{|\vec{U}| |\vec{V}|} = cos ( 2 π n ) H 2 + cos 2 ( π n ) r 2 H 2 + cos 2 ( π n ) r 2 -\dfrac{\cos(\dfrac{2\pi}{n})H^2 + \cos^2(\dfrac{\pi}{n})r^2}{H^2 + \cos^2(\dfrac{\pi}{n})r^2}

For the n n gonal base x = 2 r sin ( π n ) x = 2r\sin(\dfrac{\pi}{n}) and the height h = r cos ( π n ) h = r\cos(\dfrac{\pi}{n})

\implies

The area of the n n -gon is A ( n ) = n 2 sin ( 2 π n ) r 2 A(n) = \dfrac{n}{2}\sin(\dfrac{2\pi}{n})r^2 \implies the volume of the n n -gonal pyramid is V ( n ) = n 6 sin ( 2 π n ) r 2 H V(n) = \dfrac{n}{6}\sin(\dfrac{2\pi}{n})r^2 H

Let the above diagram represent an n n -gonal pyramid.

R 2 = H 2 2 H R + R 2 + r 2 H 2 2 H R + r 2 = 0 R^2 = H^2 - 2HR + R^2 + r^2 \implies H^2 - 2HR + r^2 = 0 \implies

r 2 = 2 H R H 2 V ( n ) = n 6 sin ( 2 π n ) ( 2 H 2 R H 3 ) r^2 = 2HR - H^2 \implies V(n) = \dfrac{n}{6}\sin(\dfrac{2\pi}{n})(2H^2R - H^3) \implies

V ( n ) d H = n 6 sin ( 2 π n ) H ( 4 R 3 H ) = 0 H 0 H = 4 R 3 \dfrac{V(n)}{dH} = \dfrac{n}{6}\sin(\dfrac{2\pi}{n})H(4R - 3H) = 0 \:\ H \neq 0 \implies H = \dfrac{4R}{3} r 2 = 8 R 2 9 \implies r^2 = \dfrac{8R^2}{9}

\implies

cos ( θ n ) = 2 cos ( 2 π n ) + cos 2 ( π n ) 2 + cos 2 ( π n ) \cos(\theta_{n}) = -\dfrac{2\cos(\dfrac{2\pi}{n}) + \cos^2(\dfrac{\pi}{n})}{2 + \cos^2(\dfrac{\pi}{n})} = 5 cos ( 2 π n ) + 1 5 + cos ( 2 π n ) = -\dfrac{5\cos(\dfrac{2\pi}{n}) + 1}{5 + \cos(\dfrac{2\pi}{n})}

From above H = 4 R 3 , r = 2 2 3 h = r cos ( π n ) = 2 2 3 cos ( π n ) R H = \dfrac{4R}{3}, r = \dfrac{2\sqrt{2}}{3} \implies h = r\cos(\dfrac{\pi}{n}) = \dfrac{2\sqrt{2}}{3}\cos(\dfrac{\pi}{n})R

tan ( λ n ) = H h = 2 cos ( π n ) \implies \tan(\lambda_{n}) = \dfrac{H}{h} = \dfrac{\sqrt{2}}{\cos(\dfrac{\pi}{n})} cos ( π n ) = 2 tan ( λ n ) \implies \cos(\dfrac{\pi}{n}) = \dfrac{\sqrt{2}}{\tan(\lambda_{n})}

and

cos ( θ n ) = 5 cos ( 2 π n ) + 1 5 + cos ( 2 π n ) = 10 cos 2 ( π n ) 4 4 + 2 cos 2 ( π n ) \cos(\theta_{n}) = -\dfrac{5\cos(\dfrac{2\pi}{n}) + 1}{5 + \cos(\dfrac{2\pi}{n})} = -\dfrac{10\cos^2(\dfrac{\pi}{n}) - 4} {4 + 2\cos^2(\dfrac{\pi}{n})}

cos ( θ n ) = \implies \cos(\theta_{n}) = tan 2 ( λ n ) 5 sec 2 ( λ n ) sec ( λ n ) cos ( θ n ) = tan 2 ( λ n ) 5 \dfrac{\tan^2(\lambda_{n}) - 5}{\sec^2(\lambda_{n})} \implies \sec^(\lambda_{n})\cos(\theta_{n}) = \tan^2(\lambda_{n}) - 5

tan 2 ( λ n ) sec 2 ( λ n ) cos ( θ n ) = 5 \implies \tan^2(\lambda_{n}) - \sec^2(\lambda_{n}) * \cos(\theta_{n}) = \boxed{5}

Note: cos ( θ ) = lim n cos ( θ n ) = 1 θ = 18 0 \cos(\theta) = \lim_{n \rightarrow \infty} \cos(\theta_{n}) = -1 \implies \theta = 180^{\circ} .

Also, d 2 V ( n ) d H 2 = 2 3 n R < 0 \dfrac{d^2V(n)}{dH^2} = -\dfrac{\sqrt{2}}{3}nR < 0 \implies max occurs at H = 4 R 3 H = \dfrac{4R}{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...