Let and be the volume of the largest -gonal pyramid that is inscribed in a sphere of radius .
If is the angle (in degrees) made between two adjacent faces of the -gonal pyramid and is the slant height angle(in degrees) of the -gonal pyramid, find
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
O P − − 2 sin 2 ( n π ) r i + sin ( n 2 π ) r j + 0 k
O S = − r i + 0 j + H k
O R − − 2 sin 2 ( n π ( n − 1 ) ) r i + sin ( n 2 π ( n − 1 ) ) r j + 0 k
⟹
U = O P X O S = sin ( n 2 π ) r H i + 2 sin 2 ( n π ) r H j + sin ( n 2 π ) r 2 k
V = O R X O S = sin ( n 2 π ( n − 1 ) ) r H i + 2 sin 2 ( n π ( n − 1 ) ) r H j + sin ( n 2 π ( n − 1 ) ) r 2 k
After simplifying and using the fact that cos ( π − w ) = − cos ( w ) , sin ( π − w ) = sin ( w ) and sin ( 2 w ) = 2 sin ( w ) cos ( w ) we obtain:
U ∘ V = − 4 r 2 sin 2 ( n π ) ( cos ( n 2 π ) H 2 + cos 2 ( n π ) r 2 )
∣ U ∣ = 2 r sin ( n π ) H 2 + cos 2 ( n π ) r 2 = ∣ V ∣
⟹ cos ( θ n ) = ∣ U ∣ ∣ V ∣ U ∘ V = − H 2 + cos 2 ( n π ) r 2 cos ( n 2 π ) H 2 + cos 2 ( n π ) r 2
For the n gonal base x = 2 r sin ( n π ) and the height h = r cos ( n π )
⟹
The area of the n -gon is A ( n ) = 2 n sin ( n 2 π ) r 2 ⟹ the volume of the n -gonal pyramid is V ( n ) = 6 n sin ( n 2 π ) r 2 H
Let the above diagram represent an n -gonal pyramid.
R 2 = H 2 − 2 H R + R 2 + r 2 ⟹ H 2 − 2 H R + r 2 = 0 ⟹
r 2 = 2 H R − H 2 ⟹ V ( n ) = 6 n sin ( n 2 π ) ( 2 H 2 R − H 3 ) ⟹
d H V ( n ) = 6 n sin ( n 2 π ) H ( 4 R − 3 H ) = 0 H = 0 ⟹ H = 3 4 R ⟹ r 2 = 9 8 R 2
⟹
cos ( θ n ) = − 2 + cos 2 ( n π ) 2 cos ( n 2 π ) + cos 2 ( n π ) = − 5 + cos ( n 2 π ) 5 cos ( n 2 π ) + 1
From above H = 3 4 R , r = 3 2 2 ⟹ h = r cos ( n π ) = 3 2 2 cos ( n π ) R
⟹ tan ( λ n ) = h H = cos ( n π ) 2 ⟹ cos ( n π ) = tan ( λ n ) 2
and
cos ( θ n ) = − 5 + cos ( n 2 π ) 5 cos ( n 2 π ) + 1 = − 4 + 2 cos 2 ( n π ) 1 0 cos 2 ( n π ) − 4
⟹ cos ( θ n ) = sec 2 ( λ n ) tan 2 ( λ n ) − 5 ⟹ sec ( λ n ) cos ( θ n ) = tan 2 ( λ n ) − 5
⟹ tan 2 ( λ n ) − sec 2 ( λ n ) ∗ cos ( θ n ) = 5
Note: cos ( θ ) = lim n → ∞ cos ( θ n ) = − 1 ⟹ θ = 1 8 0 ∘ .
Also, d H 2 d 2 V ( n ) = − 3 2 n R < 0 ⟹ max occurs at H = 3 4 R .