Pyramid Craze

Geometry Level pending

Consider a pyramid whose base is a regular n g o n . n - gon.

Let V p V_{p} be the volume of the largest pyramid above that can be inscribed in a sphere of radius R R , where V s V_{s} is the volume of the sphere.

Let a , b , c a,b,c be positive integers. If V p V s = a 2 n b 3 π sin ( c n ) \dfrac{V_p}{V_{s}} = \dfrac{a^2 n}{b^3\pi} \sin(\dfrac{c}{n}^\circ) , find a + b + c a + b + c .


The answer is 365.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 19, 2017

For area of n g o n n - gon :

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = 180 n \angle{BAD} = \dfrac{180}{n} .

x 2 = r sin ( 180 n ) r = x 2 sin ( 180 n ) h = x 2 cot ( 180 n ) A A B C = 1 4 cot ( 180 n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{180}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{180}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{180}{n}) x^2 \implies

A n g o n = n 4 cot ( 180 n ) x 2 V p = n 12 cot ( 180 n ) x 2 H A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{180}{n}) x^2 \implies V_{p} = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H

The volume of the sphere V s = 4 3 π R 3 V_{s} = \dfrac{4}{3} \pi R^3

Let H H be the height of the given pyramid.

In the right triangle above: A C = H R , B C = x 2 sin ( 180 n ) , A B = R AC = H - R, BC = \dfrac{x}{2 \sin(\dfrac{180}{n})}, AB = R \implies

R 2 = ( H R ) 2 + x 2 4 csc 2 ( 180 n ) x 2 = 4 H ( 2 R H ) sin 2 ( 180 n ) R^2 = (H - R)^2 + \dfrac{x^2}{4} \csc^2(\dfrac{180}{n}) \implies x^2 = 4H(2R - H) \sin^2(\dfrac{180}{n})

V p ( H ) = n 6 sin ( 360 n ) ( 2 R H 2 H 3 ) \implies V_{p}(H) = \dfrac{n}{6} \sin(\dfrac{360}{n}) (2RH^2 - H^3) \implies

d V p d H = n 6 sin ( 360 n ) ( H ) ( 4 R 3 H ) = 0 \dfrac{dV_{p}}{dH} = \dfrac{n}{6} \sin(\dfrac{360}{n}) (H) (4R - 3H) = 0 , H 0 H = 4 R 3 x 2 = 32 9 sin 2 ( 180 n ) R 2 x = 4 2 3 sin ( 180 n ) R H \neq 0 \implies H = \dfrac{4R}{3} \implies x^2 = \dfrac{32}{9} \sin^2(\dfrac{180}{n}) R^2 \implies x = \dfrac{4 \sqrt{2}}{3} \sin(\dfrac{180}{n}) R

H = 4 R 3 H = \dfrac{4R}{3} maximizes V p ( H ) V_{p}(H) since d 2 V p d H 2 ( H = 4 R 3 ) = 2 n 3 sin ( 360 n ) R < 0 \dfrac{d^2V_{p}}{dH^2}|_{(H = \dfrac{4R}{3})} =\dfrac{-2n}{3} \sin(\dfrac{360}{n}) R < 0

H = 4 R 3 H = \dfrac{4R}{3} and x 2 = 32 9 sin 2 ( 180 n ) R 2 x^2 = \dfrac{32}{9} \sin^2(\dfrac{180}{n}) R^2 \implies V p = 4 n 27 π sin ( 360 n ) V s V_{p} = \dfrac{4n}{27\pi} \sin(\dfrac{360}{n}) V_{s} \implies V p V s = 2 2 n 3 3 π sin ( 360 n ) = a 2 n b 3 π sin ( c n ) a + b + c = 365 . \dfrac{V_{p}}{V_{s}} = \dfrac{2^2 n}{3^3\pi} \sin(\dfrac{360}{n}) = \dfrac{a^2 n}{b^3\pi} \sin(\dfrac{c}{n}) \implies a + b + c = \boxed{365}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...