Pyramid Investigations 6 – Reversing The Pyramid

Algebra Level 1

What is the value of n n in the following expression?

1 + 2 + 3 + + ( n 1 ) + n + ( n 1 ) + + 3 + 2 + 1 = 289 1 + 2 + 3 + \dots + (n-1) + n + (n-1) + \dots + 3 + 2 + 1 = 289


Image Credit: Ricardo Liberato , CC SA 2.0


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

1+2+3+.............+(n-1)+n+(n-1)+...........+3+2+1 =289
2[1+2+3+.......+n]-n =289
n(n+1)-n = 289
n^2 = 289
n=17


Why is 2(1+2+3+...n) =n(n+1) ?

Adolphout H - 11 months ago

its the sum of the 1st pos ints formula i.e. 1+2+3+...+n. Or the sumation of n(n+1)/2 the 2 es cancel out

John Shima - 9 months, 3 weeks ago

Log in to reply

Ok, thank you.

Adolphout H - 5 months, 1 week ago

N + 2 K = 289 K = i = 1 N 1 i = ( N 1 ) N 2 N + N 2 N = 289 N = 289 = 17 ( + v a l u e ) N+2K=289\\ K=\sum _{ i=1 }^{ N-1 }{ i } =\frac { (N-1)N }{ 2 } \\ N+{ N }^{ 2 }-N=289\\ N=\sqrt { 289 } =17 (+value)

Prasun Biswas
Mar 29, 2014

See the solution posted by me for this problem (link in the word "this") which depicts that the sum of such series of n n can be calculated by n 2 n^2 . So, from that we can rewrite the problem as -->

n 2 = 289 n = 17 n^2=289 \implies n=\boxed{17}

We ignore n = ( 17 ) n=(-17) because the series cannot proceed with n = ( 17 ) n=(-17) .

Timothy Wong
Apr 22, 2014

We could observe a pattern:

1 = 1 1=1

1 + 2 + 1 = 4 1+2+1=4

1 + 2 + 3 + 2 + 1 = 9 1+2+3+2+1=9

1 + 2 + 3 + + ( n 1 ) + n + ( n 1 ) + + 3 + 2 + 1 = n 2 1+2+3+\ldots+(n-1)+n+(n-1)+\ldots+3+2+1=n^2

n 2 = 289 n = 289 = 17 n^2=289 \Rightarrow n=\sqrt {289}=17

Rohan Joshi
Oct 2, 2020

The first part (1+2+3+4......(n-1)+n) is just the sum of first n natural numbers, n(n+1)/2. The last part((n-1)+....3+2+1) is the sum of the first (n-1) natural numbers, or n(n-1)/2. Thus 1+2+3...+(n-1)+n+(n-1)....+3+2+1=n(n+1)/2 + n(n-1)/2=n(n+1+n-1)/2=n^2. Thus n^{2}=289 or n=17.

Jack Rawlin
Dec 22, 2014

Let a = 1 + 2 + 3 + + ( n 1 ) + n + ( n 1 ) + + 3 + 2 + 1 a = 1 + 2 + 3 + \ldots + (n - 1) + n + (n - 1) + \ldots + 3 + 2 + 1

Given that

1 x = x ( x + 1 ) 2 \displaystyle \sum_{1}^x = \frac {x(x + 1)}{2}

and

a = 2 ( 1 + 2 + 3 + + ( n 1 ) ) + n a = 2(1 + 2 + 3 + \ldots + (n - 1)) + n

meaning that

a = 2 1 n 1 + n a = 2\displaystyle \sum_{1}^{n - 1} + n

Using the formula we get

a = 2 ( n 1 ) ( n 1 + 1 ) 2 + n a = 2\frac {(n - 1)(n - 1 + 1)}{2} + n

Simplifying this gives

a = 2 n ( n 1 ) 2 + n n ( n 1 ) + n n 2 n + n n 2 a = \frac {2n(n - 1)}{2} + n \Rightarrow n(n - 1) + n \Rightarrow n^2 - n + n \Rightarrow n^2

Since a = 289 a = 289 and a = n 2 a = n^2

n 2 = 289 n = 289 n = 17 n^2 = 289 \Rightarrow n = \sqrt {289} \Rightarrow n = 17

So the answer is 17 17

Gayuh Rahutami
Jan 16, 2016

1 + 2 + 3 + . . . + ( n 1 ) + n + ( n 1 ) + . . . + 3 + 2 + 1 = 289 1 + 2 + 3 +... + (n-1) + n + (n-1) +...+ 3 + 2 + 1 = 289

2 ( 1 + 2 + 3 + . . . + ( n 1 ) ) + n = 289 2 (1 + 2 + 3 +... + (n-1))+n = 289

{ 1 + 2 + 3 + . . . + ( n 1 ) } = 289 n 2 \{ 1+2+3+...+(n-1)\} \quad =\quad \frac { 289\quad -\quad n }{ 2 }

n 1 2 ( 2 + n 2 ) = 289 n 2 \frac { n-1 }{ 2 } (2+n-2)\quad =\quad \frac { 289\quad -\quad n }{ 2 }

( n 1 ) × n = 289 n (n-1)\times \quad n\quad =\quad 289\quad -\quad n

n 2 n = 289 n^{ 2 }\quad -\quad n\quad =\quad 289

n 2 = 289 n^{ 2 }\quad =\quad 289

n = 17

Rejhan Hocanin
Apr 18, 2016

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16 = 136, 136 + 136 = 272, 289 - 272 = 17

it's a series prefer sum number. we can calculate this like n^2=289. for this 17^2=289 so answer is 17.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...