Pyramid Mania

Geometry Level 4

Point O O is the center of square A B C D ABCD with vertices A , B , C , D A,B,C,D as shown above. The point P P with coordinates ( a , a , 0 ) (a,a,0) lies inside square A B C D ABCD and the height of the square pyramid above is P Q PQ .

(1): Find m Q D C = λ m\angle{QDC} = \lambda (in degrees) that minimizes the triangular face Q D C QDC when the volume is held constant.

(2): Find m Q A D = θ m\angle{QAD} = \theta (in degrees) that minimizes the triangular face Q A D QAD when the volume is held constant. Note: This pyramid results in different values of a a and h h .

Express the result as λ + θ \lambda + \theta .

Note: I used the same diagram for (1) and (2) , although the pyramids have different dimensions.


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 21, 2018

In right Q P R , P R = 3 a \triangle{QPR}, \:\ \overline{PR} = 3a and Q P = h QP = h .

Q R = 9 a 2 + h 2 A = A Q P R = 2 a 9 a 2 + h 2 \implies QR = \sqrt{9a^2 + h^2} \implies A = A_{\triangle{QPR}} = 2a\sqrt{9a^2 + h^2}

The volume of the pyramid V = 16 3 a 2 h = k h = 3 k 16 a 2 V = \dfrac{16}{3} a^2 h = k \implies h = \dfrac{3k}{16a^2} \implies A ( a ) = 6 256 a 6 + k 2 a d A d a = 6 ( 512 a 6 k 2 ) a 2 256 a 6 + k 2 = 0 a 0 a = k 1 3 2 2 A(a) = \dfrac{6\sqrt{256a^6 + k^2}}{a} \implies \dfrac{dA}{da} = \dfrac{6(512a^6 - k^2)}{a^2\sqrt{256a^6 + k^2}} = 0 \:\ a \neq 0 \implies a = \dfrac{k^{\frac{1}{3}}}{2\sqrt{2}} \implies h = 3 k 1 3 2 h = \dfrac{3 k^{\frac{1}{3}}}{2} .

u = 4 a i + 0 j + 0 k \vec{u} = 4a\vec{i} + 0\vec{j} + 0\vec{k}

v = 3 a i + 3 a j + h k \vec{v} = 3a\vec{i} + 3a\vec{j} + h\vec{k}

u X v = 4 a h 2 + 9 a 2 , u = 4 a , v = 18 a 2 + h 2 \implies |\vec{u} X \vec{v}| = 4a\sqrt{h^2 + 9 a^2}, \:\ |\vec{u}| = 4a, \:\ |\vec{v}| = \sqrt{18a^2 + h^2}

sin ( θ ) = h 2 + 9 a 2 18 a 2 + h 2 = 3 2 \implies \sin(\theta) = \dfrac{\sqrt{h^2 + 9a^2}}{\sqrt{18a^2 + h^2}} = \dfrac{\sqrt{3}}{2} θ = 6 0 \implies \theta = \boxed{60^\circ} .

In right Q P S , P S = a \triangle{QPS}, \:\ \overline{PS} = a and Q P = h QP = h

Q S = a 2 + h 2 A = A Q P S = 2 a a 2 + h 2 \implies QS = \sqrt{a^2 + h^2} \implies A = A_{\triangle{QPS}} = 2a\sqrt{a^2 + h^2}

The volume of the pyramid V = 16 3 a 2 h = k h = 3 k 16 a 2 V = \dfrac{16}{3} a^2 h = k \implies h = \dfrac{3k}{16a^2} \implies A ( a ) = 2 256 a 6 + 9 k 2 a d A d a = 2 ( 512 a 6 9 k 2 ) a 2 256 a 6 + 9 k 2 = 0 A(a) = \dfrac{2\sqrt{256a^6 + 9k^2}}{a} \implies \dfrac{dA}{da} = \dfrac{2(512a^6 - 9k^2)}{a^2\sqrt{256a^6 + 9k^2}} = 0 \:\ a 0 a = 3 1 3 k 1 3 2 2 a \neq 0 \implies a = \dfrac{3^{\frac{1}{3}}k^{\frac{1}{3}}}{2\sqrt{2}} \implies h = 3 1 3 k 1 3 2 h = \dfrac{3^{\frac{1}{3}} k^{\frac{1}{3}}}{2} .

u = 0 i + 4 a j + 0 k \vec{u} = 0\vec{i} + 4a\vec{j} + 0\vec{k}

v = a i + 3 a j + h k \vec{v} = -a\vec{i} + 3a\vec{j} + h\vec{k}

u X v = 4 a h 2 + a 2 , u = 4 a , v = 10 a 2 + h 2 \implies |\vec{u} X \vec{v}| = 4a\sqrt{h^2 + a^2}, \:\ |\vec{u}| = 4a, \:\ |\vec{v}| = \sqrt{10a^2 + h^2}

sin ( θ ) = h 2 + a 2 10 a 2 + h 2 = 1 2 \implies \sin(\theta) = \dfrac{\sqrt{h^2 + a^2}}{\sqrt{10a^2 + h^2}} = \dfrac{1}{2} θ = 3 0 \implies \theta = \boxed{30^\circ}

θ + λ = 9 0 \implies \theta + \lambda = \boxed{90^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...