Pyramid with a Quadrilateral Base.

Probability Level pending

In quadrilateral A B C D ABCD , M 1 , M 2 , M 3 M_{1}, M_{2}, M_{3} and M 4 M_{4} are midpoints of A B , C D , A D \overline{AB}, \overline{CD}, \overline{AD} and B C \overline{BC} respectively, A B C A D C \triangle{ABC} \cong \triangle{ADC} and P P is the centroid of quadrilateral A B C D ABCD obtained by finding the intersection of the bimedians.

In A B C \triangle{ABC} , m A B C m\angle{ABC} is twice m B A C m\angle{BAC} , A C = m a , A B = ( m 1 ) a \overline{AC} = ma, \:\ \overline{AB} = (m - 1)a and B C = ( m 2 ) a \overline{BC} = (m - 2)a .

Let the height h h of the pyramid be P Q PQ .

(1): Find the m Q M 2 P = θ m\angle{QM_{2}P} = \theta (in degrees) that minimizes the triangular face Q D C QDC .

(2) Using the values of a a and h h obtained in (1) , find the m Q D P = λ m\angle{QDP} = \lambda and the m Q C P = ω m\angle{QCP} = \omega (in degrees).

Express the result as θ + λ + ω \theta + \lambda + \omega to seven decimal places.


The answer is 148.4848215.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 26, 2018

Using the law of sines sin ( 2 β ) sin ( β ) = m m 2 cos ( β ) = m 2 ( m 2 ) \implies \dfrac{\sin(2\beta)}{\sin(\beta)} = \dfrac{m}{m - 2} \implies \cos(\beta) = \dfrac{m}{2(m - 2)}

Using the law of cosines with included B A C m 2 4 m + 4 = m 2 2 m + 1 + m 2 m 2 ( m 1 ) m 2 m 2 7 m + 6 = 0 \angle{BAC} \implies m^2 - 4m + 4 = m^2 - 2m + 1 + m^2 - \dfrac{m^2(m - 1)}{m - 2} \implies m^2 - 7m + 6 = 0 \implies ( m 6 ) ( m 1 ) = 0 m 1 m = 6 A C = 6 a , A B = 5 a (m - 6)(m - 1) = 0 \:\ m \neq 1 \implies m = 6 \implies \overline{AC} = 6a, \:\ \overline{AB} = 5a and B C = 4 a \overline{BC} = 4a

cos ( β ) = 3 4 B D = 5 a 7 4 a \cos(\beta) = \dfrac{3}{4} \implies \overline{BD} = \dfrac{5a\sqrt{7}}{4}a and A D = 15 a 4 AD = \dfrac{15a}{4}

Using the above quadrilateral with the given coordinates:

m M 1 M 2 = 5 7 12 y = 5 7 12 x + 45 7 a 32 m_{M_{1}M_{2}} = -\dfrac{5\sqrt{7}}{12} \implies y = -\dfrac{5\sqrt{7}}{12}x + \dfrac{45\sqrt{7a}}{32}

and,

m M 3 M 4 = 5 7 12 y = 5 7 12 x 45 7 a 32 m_{M_{3}M_{4}} = \dfrac{5\sqrt{7}}{12} \implies y = \dfrac{5\sqrt{7}}{12}x - \dfrac{45\sqrt{7a}}{32}

Solving the two equations above we obtain: x = 27 a 8 x = \dfrac{27a}{8} and y = 0 P ( 27 a 8 , 0 ) y = 0 \implies P(\dfrac{27a}{8},0) which is a midpoint of each congruent bimedian.

For triangular face Q D C QDC :

P M 2 = 319 a 8 \overline{PM_{2}} = \dfrac{\sqrt{319}a}{8} and h = P Q Q M 2 = h = \overline{PQ} \implies \overline{QM_{2}} = 64 h 2 + 319 a 2 8 \dfrac{\sqrt{64h^2 + 319a^2}}{8} and D C = 4 a A = A Q D C = 1 2 ( D C ) ( Q M 2 ) = a 4 64 h 2 + 319 a 2 \overline{DC} = 4a \implies A = A_{QDC} = \dfrac{1}{2}(\overline{DC})(\overline{QM_{2}}) = \dfrac{a}{4}\sqrt{64h^2 + 319a^2}

A A B C = A A D C = 15 7 a 2 4 A A B C D = 15 7 a 2 2 A_{\triangle{ABC}} = A_{\triangle{ADC}} = \dfrac{15\sqrt{7}a^2}{4} \implies A_{ABCD} = \dfrac{15\sqrt{7}a^2}{2} \implies the volume of the given pyramid is V = 5 7 a 2 2 a 2 h = k h = 2 k 5 7 a 2 A ( a ) = 256 k 2 + 55825 a 6 20 7 a 2 V = \dfrac{5\sqrt{7}a^2}{2} a^2 h = k \implies h = \dfrac{2k}{5\sqrt{7}a^2} \implies A(a) = \dfrac{\sqrt{256k^2 + 55825a^6}}{20\sqrt{7}a^2} \implies

d A d a = 55825 a 6 128 k 2 10 7 a 2 256 k 2 + 55825 a 6 = 0 \dfrac{dA}{da} = \dfrac{55825a^6 - 128k^2}{10\sqrt{7}a^2\sqrt{256k^2 + 55825a^6}} = 0

a = ( 8 2 k 5 2233 ) 1 3 h = 2 k 5 7 ( 5 2233 8 2 k ) 2 3 \implies a = (\dfrac{8\sqrt{2}k}{5\sqrt{2233}})^{\frac{1}{3}} \implies h = \dfrac{2k}{5\sqrt{7}}(\dfrac{5\sqrt{2233}}{8\sqrt{2}k})^{\frac{2}{3}}

Let θ = m Q M 2 P tan ( θ ) = 8 h 319 a \theta = m\angle{QM_{2}P} \implies \tan(\theta) = \dfrac{8h}{\sqrt{319}a}

h a = 2 319 8 tan ( θ ) = 2 θ 54.735610 3 \dfrac{h}{a} = \dfrac{\sqrt{2}\sqrt{319}}{8} \implies \tan(\theta) = \sqrt{2} \implies \boxed{\theta \approx 54.7356103^\circ}

P D = 709 8 \overline{PD} = \dfrac{\sqrt{709}}{8}

Let λ = m Q D P tan ( λ ) = 8 709 h a = 638 709 λ 43.489277 5 \lambda = m\angle{QDP} \implies \tan(\lambda) = \dfrac{8}{\sqrt{709}}\dfrac{h}{a} = \sqrt{\dfrac{638}{709}} \implies \boxed{\lambda \approx 43.4892775^\circ}

P C = 21 8 \overline{PC} = \dfrac{21}{8}

ω = m Q P C tan ( ω ) = 8 21 h a = 638 21 ω 50.259933 7 \omega = m\angle{QPC} \implies \tan(\omega) = \dfrac{8}{21}\dfrac{h}{a} = \dfrac{\sqrt{638}}{21} \implies \boxed{\omega \approx 50.2599337^\circ}

θ + λ + ω = 148.4848215 \implies \theta + \lambda + \omega = \boxed{148.4848215} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...